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Introduction

@ Models with extra U(1) symmetry are studied as
extensions of the Standard Model (SM). There are many
motivations to consider this kind of models.

@ In supersymmetric extensions, an additional U(1) factor
may provides a mechanism to generate the ¢ term
through the addition of a scalar singlet.

@ Non-supersymmetric extensions give rise to a variety of
models like left-right symmetric models, B-L, flip grand
unified models, Eg, SO(10), etc, which involve theoretical
and phenomenological aspects:



@ Flavor physics, Flavor Changing,
© Neutrino physics,

© Dark matter,

© Aditional Higgs,

© Neutral currents, Z,

@ They provide hints to expalin the SM mass hierarchy
problem, where top quark acquires mass at the EW scale
and the other fermions exhibit different low mass values.

@ Introduced right handed sterile neutrinos to explain the
masses and mixing of the active neutrinos.

@ These extensions have Two Higgs Doublet Models in the
low energy limit, where two scalar doublets ¢4 and ¢» are
introduced in order to generate the appropriate Yukawa
couplings that provide masses to all fermions.



@ A singlet scalar field  is introduced to break U(1)
symmetry and to give masses to exotic particles beyong
the SM.

@ A singlet scalar field o can be considered to study dark
matter problem.

@ In addition of a new neutral gauge boson Z’, extended
fermion spectrum is necessary in order to obtain an
anomaly-free theory. LHC collider pushes a lower mass
bound to Z’ of the order of 3 TeV.

@ Since the new symmetry introduces an additional gauge
boson, there arise new couplings that induce nontrivial
triangle anomalies

@ There are 6 possible combinations Tr[Tg,, TsyTx] = 0



Quiral anomalies
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where the sums in Q run over all the quarks (u', d’, T, J"), and ¢
runs over all leptons €', v, vg, Np.
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There are some solutions to anomaly equations. But we
consider one of them which can explain mass herarchy
problem. The second column U(1)x are the values of the new
quantum number.



Particle contents: Fermions
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J? 0
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- The U(1)x symmetry is non-universal in the left-handed
SM quark sector.

- The SM leptons are also non universal.

- The right handed quarks are universal, but the right
handed leptons are non universal.

- The three extra singlets T and J" are new up- and
down-like quarks, respectively, where n =1, 2.

- We include new neutrinos (v%) and N5 which may
generate see-saw neutrino masses in order to obtain a
realistic model compatible with oscillation data.

- (vk) and v, generate Dirac masses and N produce
Majorana mass terms.



Particle contents: Bosons

Scalar bosons X
Higgs Doublets
¢+
$1= | hrvieing 2/3
V2
05
P2 = | hotvotin 13
V2
Higgs Singlets
X = g5t W i) 173
o -1/3

Table: Non-universal X quantum number for Higgs fields.

The scalar doublet ¢4 also has a nontrivial charge X.



- The spectrum includes an additional scalar doublet ¢,
identical to ¢4 under Ggy but with different U(1)x charges,
where the electroweak scale is related to the VEVs by
V= \/1/12 + Vg.

- An extra scalar singlet x with VEV v, is required to
produce the symmetry breaking of the U(1)x symmetry.
We assume that it happens at a large scale v, > v.

- Another scalar singlet o can be introduced as a dark
matter candidate.

- We define the weak hypercharge Y as usual, where the
electric charge is defined by the Gell-Mann-Nishijima
relation:

Y
Q—T3L+§

with T3, the isospin defined for left- and right-handed
fermions.



The Higgs Potential

The renormalizable and Ggy, x U(1)x invariant potential is

V = 12¢ln + 1Bohén + 1B x + b (¢I¢2X + h-C-)
£ 2 (8lon) 40 (6he) +da (X
+ Aa(9101) (0h02) + s (0] 02) (her)
+ 6 (@lor) (x0 + 27 (¢h02) (") (1)

When we apply the minimum conditions for each scalar VEV
vi = 11.2,, We find the square mass matrices M,% for the real
fields, M? for the imaginary fields and M2 for the charged fields.
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After diagonalization, we obtain the following physical spectrum
and their squared masses:
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for the real sector, CP-even,
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for the pseudoscalar boson, CP-odd, and

m2, 2
m,z_,i = 20 |:1 —|—)\/50585 <2f27/X>:|

for charged Higgs bosons.




In the above expresions, we define the electroweak VEV and

the angle
v=4/v2+13, tan(B) = ?
2

In addition, we obtain two charged and two neutral would-be
Goldstone bosons, which will give masses to two charged (W)
and two neutral Z and Z’ gauge bosons, respectively.
Symmetry breaking scheme is giving by
SUB)ceSUR2) o U)ye U(1)x — vy
Z' Hy, Ay, H*

SUB)c® SUR) @ Ul)y — wvy,vs
Z, W=, hg

SUB)c @ U(1)q



Yukawa Lagrangian

We find the Yukawa Lagrangian compatible with the
Gsu x U(1)x symmetry. For the Q and | sectors we find:
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Quark masses
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ij=e.u.r
> hblidev
i=e,u;j=e,u,t
i 1
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@ The U(1)x symmetry distinguishes the quark family g}
from the others two g~ ", while the right-handed
components are universal. Thus, in the absence of the
Yukawa couplings, the model has the global symmetry:

Gylobai(h® = 0) = SU(2)4a x SU(3) i x SU(3)pi.



@ In particular, the SU(2)42 symmetry in the left-handed
sector remains in the model even after the gauge
symmetry breaking. However, the experimental
observation shows that this symmetry does not remain if
the quark masses are taken into account.

@ The extra U(1)x symmetry is not sufficient to explain the
mass spectrum. Thus, we assume the existence of global
symmetries, Zo x U(1)7,.

ul)r,: D} - D], D?— -D?
2 ¢o— —¢2, DR — —Dg, Trg— —TLp.



Thus, by requiring the discrete symmetries, the mass
Lagrangian becomes:

—(Lg) = ZU[(WW)UU{;,JFD*E(VQ@D)&D'A

i=c,t
T (),
O]+ B (), < BE (o),
T () o (), 8 e

—(Lq) = Ul(My);UL+ Di(Mp);Ds + Ul (k)i Ta + D} (8)imJ3
+ Tu(K)jUg + To(Mr) Tr + J(S)nDg + ) (My)amJE + h.c



The extended mass matrices for up and down sectors are

0 0 0 ‘ 12°3%
1 | vaee ras | 0
!
My = 7 v1831 118z vidsz | 0o |,
T
V2Cq 2Co  12C3 | Uy hX
0 0 0 | v vz
0 0 0 | vy w2l
M. — 1 | v2Bsy 12Bsp 10Bs3 | 0 0
L = —
Ve | — — - — - —
v2Ci1 12C2 12Ci3 | vykir vykiz

v2Co1 120 12Cp3 vy ko1 vyKoo

which exhibit non-vanishing determinant, providing masses to
all quarks. Due to the mixing components, the mass matrices
M, p have the following propertais



The upper left 3 x 3 blocks:

@ Exhibit three massless quarks (m?ha,,S =0) and

@ Three massive quarks (m?C B~ V12);
However M, , matrices:

@ have three eigenvalues m, 4 s at the MeV scale,
@ three m¢; at the GeV scale and
@ three mr , and the TeV scale.



Specific ansatz

To explore the consequences of the above mass scheme, we
assume the scenery

@ Where the mixing terms are diagonal
(02’3 = k,‘j :j,‘j = C,']' =0fori 75], while I/1j11 = l/2i22 = hD
and Cy1 = Co2 =),

@ The My sector have identical Yukawa components except
the top coupling (i.e. a; = Yy for jj # 33 and asz = Y});

@ Mp have identical components (i.e.
B31 = B3z = B33 = Yp).
Thus, the matrices become:



0 0 0 | ran
1 [ Yu iYu niYu | 0
Mb = E 141 YU q YU 141 Yt | 0 y
V2 Cq 0 0 | Z/Xhz(-
0 0 0 | hp 0
0 0 o | o hp
M,D _ L Vo YD Vo YD %] YD ’ 0 0
\/é R J— J— J— J— J—
Vo FD 0 0 ’ l/Xk11 0
0 Vo rD 0 | 0 kagg

The above matrices are diagonalized through bi-unitary
transformation of the form mq = (O2)MLOS, with mq a
diagonal matrix with real and positive values. We find for the up
sector the following approximate eigenvalues:



Eigenvalues up masses

yicivs va
W= m,~ = y4C
1 u (\@h;’/x) 34 1<2m7

u _ ~ M _ ./
)\2 = M.~ 2\/§(YU + Yt) [1 1 +4yU16Ut}
Moo= miom e (Yu+ ) [TV dyueu]
2\/§
o= fhxux, (2)
where we consider that v, > v, and define the parameters
Yu Yu— Y
_ = ) 3

The parameter ¢; "measures” the level of asymmetry of
Yukawa interactions between the top and charm quarks.



Eigenvalue down masses

For the down sector we find:

1
o= mp~—Ypr
3 b \/é DV2
1
)\E = Mp = ﬁkﬁyx’
1
)\g = Mp= 7k22UX.



In this case, the ratio between the masses of the down and
strange quarks gives:
Mg _ Mp

ms myu’

Thus, the ratio between the lightest quarks is determined only
by the mass splitting of the heavy quarks J' and J2.
Regarding m, and my, we find that:

My _ ( Y1Ci ) 2

mp V2Yp) mr
Furthermore, the ratio between the mass of the c- and t-quark
is sensible to the asymmetry parameter according to:

Me  —Yueut 4)
me 1+ Yueur



Considering the central values, the experimental masses of the
phenomenological quarks are:

my, = 2.3MeV, myg = 4.8 MeV, ms = 95 MeV,
m. = 1.275GeV, my = 4.65 GeV, my =173.5 GeV

Using the above values, leads to:

—Mmg/my _3
= —°Tt & 7.3x1
Yuteut 1+ mo/my ,3x10

mp = 20mJ2

r% ~ (5 X 10—4) ‘f;:”




@ Yy/Y:~ 0.007 is required to fit the experimental masses.

@ This ratio implies an asymmetry factor ¢y; ~ —0.985.

@ For example, if mr ~ 1 TeV and v» ~ 70 GeV we obtain
Yp ~ 102}/1 Cq.

@ Finally, we find that the large splitting between my and mg
is consequence of the existence of non-degenerated heavy
massive quarks, J', J2.

@ To obtain the observable my/m;s ratio we need Mz ~ 1
TeV and M, ~ 20 TeV.

@ Thus, the model predicts new quarks which can explain a
mass hierarchy observed among the SM quark families.






Lepton masses and mixing angles

@ A leptonic mixing matrix is present in weak charged current
which is the product of the rotation matrices of the charged
leptons and neutrinos.

@ The neutrino oscillation experiments have stablished that
neutrinos are massive and there is lepton flavor violation.

@ From the neutrino global analysis can be obtained the best
allow region for these 6 parameters: Am3,, Am3,, dcp,
Sin2 012, sin2 0o3, sin2 013.

e If we consider Am3, > 0 then Am3, can be positive or

negative. The two cases are named normal ordering and
inverted ordering.



Charged lepton masses

The Yukawa lagrangian for charged leptons according with
U(1)x symmmetry is giving by

Ly, = Z hgz_i¢gelé+h.c.

ij=e.u.

After symmetry braking the mass matrix is
0 hg hg
Me=| hg mg o | %
hgr 0 hg ) V2
where the phases can be taken out of the mass matrix as
MHerm,E = DT2’3((X, /8) MEe D273(a7 5)

M is a real symmetry mass matrix and D?3(a, ) is the
diagonal phase matrix which can be written as



0 ¢ Vo
Mg = 0 | —=
E Z y NG

1.0 0
D*3a,8) =| 0 €& 0
0 0 é¥

o >3

In order to have a herarquical lepton masses we will consider
the following relation n,{ < h < H. The unitary matrix which
dioganized the mass matrix is giving by

1 —n/h —(/H 10 O
R, = ( n/h 1 ng/hH) ( 0 e~ 0
¢/H 0 1 0 0 é€*

where the phases can be taken out by refrasing the phases of
the charge leptons.



And the masses for the charged leptons are given by

m_HV2
T_\/é
hV2
™= V2
2 2
() v
me_<h+H>x@'

In order to reproduce the experimental values of the masses
me =0.511MeV , m, =105.66MeV , m, = 1776.82MeV
we take for the Yukawa constants the following values

H = 354x1072
h = 210x 1073
¢ ~ 245x107%; n~0



Neutrino masses

The Yukawa langrangian for neutrinos according to the U(1)x is

i=e,u;j=e,u,t

+ S HECxNa + SNITCMIN + he.
5 YN 2 N'YR
P = 7“77

which produces a 9 x 9 mass matrix in the base
N, = (1,8, Ng)"



with the following 3 x 3 blocks

e T
m Ve Z’gg /I;’li% /IZ’% my = hl X
v TS 1% v v ) N = 5
\/é 02 02 02 xN \/é
My = unl

The matrix M,, can be diagonalize by using the inverse see
saw mechanism, defining the following blocks

T

M _ ml/3><3 M _ 03><3 mN3><3

Vgx3 »/ViNgxe —
033 Mg, s Mng, s

Then
03><3 MESXB)

M, = (
Mg, MNexe



In order to diagonalize the neutrino mass matrix M, by blocks
we introduce the W matrix

W ~ <(1 - %FTFT>3x3 f3x6 )
_F6><3 (1 - §FTF)6><6

with .
Fr (MM
and two blocks 3 x 3 and 6 x 6, respectively

_ —1
Mactive3x3 =~ m;f (mN) 1l\/IN (mrll\ﬂl) my,

Mheavyexe =~ M N

where the eigenvalues of mpeay, is much higher than the ones
Of macf.



To diagonalize mMpea,y = My by blocks we consider the Q2
matrix

T At 0 my
Q MNQ=Q <mL My Q

_ (urmyEut 0
B 0 VM VT

Sst
Q_1<11 1)(1—T2 szs)
V2 \~ =St 1=

1

where the masses for right handed sterile neutrinos are
i M 1
U*m‘;‘\}“gUJr = —my+ 7’\’ - gM,\,m,(,1 My ~ —mp
i M,
V*Mgllag vi = my + N + 1/\/’/\/I“I’IITI‘I/\/I,\/ ~ My

2 8



However, to simplify the model we propose diagonal matrices
for my and My

hyni O 0 v
my = 0 ~h 0 —=
N N2 \/E
0 0 hyns
Mn = pnl3xa
and the the 3 x 3 light neutrino mass matrix is
(he8)2 + (h5)?p? X X
M = | hosh + Iz p? - (h5)2 + (M)3)2p° X
heshis + Mghiar®  Boyhty + Mg hioe® (hE3)? + (m3)%p
Vs N
vZ P

where p = hyn1/hyno.
The light neutrino mass, M..ve, can be diagonalied by
Umiactive Ul/



@ The U, and Am§ can be written as function of hZz and
VEV’s.

@ Then Pontecorvo Maki Makagawa Sakata matrix is
Upnns=U; x U,

c12C013 S612CH43 80136[(S
S612CHo3C0125013S023 eld C012C02350125013S023 eld c013S023
39123923091280130923 6'6 09125923391289130923 6'6 09130923

@ Defining the mixing angles by

|U62‘2
11— ’Ues|2 ’
sin613 = |Uesl®

U302

$n2
Sin® fo3 =
1~ |Ueal?

sin2 010 =



@ The analysis of solar, atmospheric, reactor and accelerator
neutrino oscillation experiments yields, nu-fit,



Parameter ranges

@ NuFIT 3.0 (2016)
@ In the case of normal mass ordering m1 < m2 < m3,

sinf1, = 0.30610313, sin® 015 = 0.021667 335072,
sin®fp; = 0.44170:057:
— 51
5 ~ 26173
Amg, = 7507513 x 10°eV? Am5, = 2.524739% x 10~ 3¢

@ In the case of inverted mass ordering m3 < m1 < m2
sinff, = 0.30670015, sin® 63 = 0.021797500078,
sin®fp; = 0.5877005%;
~ 40
§ ~ 277732
Am3, = 7507518 x 107%eV? Ams, = 25147393 x 1073



Taking the expresions for sin® 01, sin? 63, sin? 613, Am3, and
Am3, as a function of h’, and with the nufit data we find the

best values for the Yukawa couplings of the neutrino sector for
the U(1)x model

Normal ordering Inverted ordering

hee 0138 +0.046  0.820 +0.023
h"¢  0.250 £0.050  -0.900 £0.033
h®  0.670 +0.050  -0.600 +0.018
7 0.260 +0.200  -0.605 +0.048
he; -0.610 £0.063  0.455 £0.038
h"7 -0.250 +0.243  0.880 +0.027

Table: Set of neutrino Yukawa couplings for v» = 200 GeV, v, =1
TeV, uy =500 eV, p=1/v2, hyn, =1



Conclusion

@ Find solutions to the anomaly equations without global

symmetry
SU(2)qf ® U(3)y, ® U(3)py

@ Find solutions to the anomaly equations with big X
numbers and v, = TeV, but Mz ~ gxXv, bigger than 14
TeV









