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Introduction

Models with extra U(1) symmetry are studied as
extensions of the Standard Model (SM). There are many
motivations to consider this kind of models.
In supersymmetric extensions, an additional U(1) factor
may provides a mechanism to generate the µeff term
through the addition of a scalar singlet.
Non-supersymmetric extensions give rise to a variety of
models like left-right symmetric models, B-L, flip grand
unified models, E6, SO(10), etc, which involve theoretical
and phenomenological aspects:



1 Flavor physics, Flavor Changing,
2 Neutrino physics,
3 Dark matter,
4 Aditional Higgs,
5 Neutral currents, Z ′µ

They provide hints to expalin the SM mass hierarchy
problem, where top quark acquires mass at the EW scale
and the other fermions exhibit different low mass values.
Introduced right handed sterile neutrinos to explain the
masses and mixing of the active neutrinos.
These extensions have Two Higgs Doublet Models in the
low energy limit, where two scalar doublets φ1 and φ2 are
introduced in order to generate the appropriate Yukawa
couplings that provide masses to all fermions.



A singlet scalar field χ is introduced to break U(1)
symmetry and to give masses to exotic particles beyong
the SM.
A singlet scalar field σ can be considered to study dark
matter problem.
In addition of a new neutral gauge boson Z ′, extended
fermion spectrum is necessary in order to obtain an
anomaly-free theory. LHC collider pushes a lower mass
bound to Z ′ of the order of 3 TeV.
Since the new symmetry introduces an additional gauge
boson, there arise new couplings that induce nontrivial
triangle anomalies
There are 6 possible combinations Tr [T ′SMTSMTX ] = 0



Quiral anomalies

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X

[SU(3)c]2 U(1)X → A1 =
∑

Q

XQL −
∑

Q

XQR

[SU(2)L]2 U(1)X → A2 =
∑
`

X`L + 3
∑

Q

XQL ,

[U(1)Y ]2 U(1)X → A3 =
∑
`,Q

[
Y 2
`L

X`L + 3Y 2
QL

XQL

]
−

∑
`,Q

[
Y 2
`R

X`R + 3Y 2
QR

XQR

]
where the sums in Q run over all the quarks (ui ,d i ,T , Jn), and `
runs over all leptons ei , ν i

L, ν
i
R,N

i
R.



U(1)Y [U(1)X ]2 → A4 =
∑
`,Q

[
Y`LX 2

`L
+ 3YQLX 2

QL

]
−

∑
`,Q

[
Y`R X 2

`R
+ 3YQR X 2

QR

]
[U(1)X ]3 → A5 =

∑
`,Q

[
X 3
`L

+ 3X 3
QL

]
−
∑
`,Q

[
X 3
`R

+ 3X 3
QR

]
[Grav ]2 ⊗ U(1)X → A6 =

∑
`,Q

[
X`L + 3XQL

]
−

∑
`,Q

[
X`R + 3XQR

]
There are some solutions to anomaly equations. But we
consider one of them which can explain mass herarchy
problem. The second column U(1)X are the values of the new
quantum number.



Particle contents: Fermions

Quarks X Leptons X
SM Fermionic Isospin Doublets

qu,c
L =

(
uu,c

du,c

)
L

0 `e,µL =

(
νe,µ

ee,µ

)
L

0

qt
L =

(
ut

d t

)
L

1/3 `τL =

(
ντ

eτ

)
L

-1

SM Fermionic Isospin Singlets

uu,c,t
R

du,c,t
R

2/3
−1/3

ee,τ
R

eµR

−4/3
−1/3

Non-SM Quarks Non-SM Neutrinos
TL
TR

1/3
2/3

νe,µ,τ
R

Ne,µ,τ
R

1/3
0

J1,2
L 0

J1,2
R -1/3

Table: Non-universal X quantum number for each SM and non-SM.



- The U(1)X symmetry is non-universal in the left-handed
SM quark sector.

- The SM leptons are also non universal.
- The right handed quarks are universal, but the right

handed leptons are non universal.
- The three extra singlets T and Jn are new up- and

down-like quarks, respectively, where n = 1,2.
- We include new neutrinos (ν i

R) and N i
R which may

generate see-saw neutrino masses in order to obtain a
realistic model compatible with oscillation data.

- (ν i
R) and νL generate Dirac masses and N i

R produce
Majorana mass terms.



Particle contents: Bosons

Scalar bosons X
Higgs Doublets

φ1 =

(
φ+1

h1+v1+iη1√
2

)
2/3

φ2 =

(
φ+2

h2+v2+iη2√
2

)
1/3

Higgs Singlets
χ = 1√

2
(ξχ + vχ + iζχ) -1/3
σ -1/3

Table: Non-universal X quantum number for Higgs fields.

The scalar doublet φ1 also has a nontrivial charge X .



- The spectrum includes an additional scalar doublet φ2
identical to φ1 under GSM but with different U(1)X charges,
where the electroweak scale is related to the VEVs by

ν =
√
ν2

1 + ν2
2 .

- An extra scalar singlet χ with VEV νχ is required to
produce the symmetry breaking of the U(1)X symmetry.
We assume that it happens at a large scale νχ � ν.

- Another scalar singlet σ can be introduced as a dark
matter candidate.

- We define the weak hypercharge Y as usual, where the
electric charge is defined by the Gell-Mann-Nishijima
relation:

Q = T3L +
Y
2

with T3L the isospin defined for left- and right-handed
fermions.



The Higgs Potential

The renormalizable and GSM × U(1)X invariant potential is

V = µ2
1φ
†
1φ1 + µ2

2φ
†
2φ2 + µ2

3χ
∗χ+ f2

(
φ†1φ2χ+ h.c.

)
+ λ1

(
φ†1φ1

)2
+ λ2

(
φ†2φ2

)2
+ λ3 (χ∗χ)2

+ λ4

(
φ†1φ1

)(
φ†2φ2

)
+ λ5

(
φ†1φ2

)(
φ†2φ1

)
+ λ6

(
φ†1φ1

)(
χ∗χ) + λ7

(
φ†2φ2

)
(χ∗χ) (1)

When we apply the minimum conditions for each scalar VEV
νi = ν1,2,χ, we find the square mass matrices M2

R for the real
fields, M2

I for the imaginary fields and M2
C for the charged fields.



M2
R =


4λ1ν

2
1 − f2

ν2νχ
ν1

2f2νχ + 2(λ5 + λ′5)ν1ν2 f2ν2 + 4λ6ν1νχ
∗ 4λ2ν

2
2 − f2

ν1νχ
ν2

f2ν1 + 2λ7ν2νχ
∗ ∗ 4λ3ν

2
χ − f2

ν1ν2
νχ

 ,

in the basis h1,h2, ξχ CP - even,

M2
I =

−f2
ν1νχ
ν2

f2νχ f2ν1

∗ −f2
ν2νχ
ν1

−f2ν2

∗ ∗ −f2
ν1ν2
νχ

 ,

in the basis η0
1, η

0
2, ζχ CP - odd, and

M2
C =

(
−f2

ν1νχ
ν2
− λ′5ν2

1 f2νχ + λ′5ν1ν2

∗ −f2
ν2νχ
ν1
− λ′5ν2

2

)
,

in the basis φ+1 , φ
+
2 .



After diagonalization, we obtain the following physical spectrum
and their squared masses:

m2
h0
≈ ν2

[
λ2S4

β + λ1C4
β + (λ5 + λ′5)C2

βS2
β

]
m2

H0
≈ 2f2νχ

CβSβ
, m2

H0
χ
≈ 8λ3ν

2
χ

for the real sector, CP-even,

m2
A0

=
m2

H0

2

[
1 + C2

βS2
β

(
ν

νχ

)2
]

for the pseudoscalar boson, CP-odd, and

m2
H± =

m2
H0

2

[
1 + λ′5CβSβ

(
ν2

2f2νχ

)]
for charged Higgs bosons.



In the above expresions, we define the electroweak VEV and
the angle

ν =
√
ν2

1 + ν2
2 , tan(β) =

ν1

ν2
.

In addition, we obtain two charged and two neutral would-be
Goldstone bosons, which will give masses to two charged (W±)
and two neutral Z and Z ′ gauge bosons, respectively.
Symmetry breaking scheme is giving by

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X −→ νχ

Z ′,H0,A0,H±

SU(3)C ⊗ SU(2)L ⊗ U(1)Y −→ ν1, ν2

Z ,W±,h0

SU(3)C ⊗ U(1)Q



Yukawa Lagrangian

We find the Yukawa Lagrangian compatible with the
GSM × U(1)X symmetry. For the Q and l sectors we find:

−LQ = qt
L

(
φ̃2hU

2

)
tj

U j
R +

∑
a=u,c

qa
L(φ̃1hU

1 )ajU
j
R

+ qt
L

(
φ1hD

1

)
tj

Dj
R +

∑
a=u,c

qa
L

(
φ2hD

2

)
aj

Dj
R

+ qt
L(φ1hJ

1)tmJm
R +

∑
a=u,c

qa
L

(
φ2hJ

2

)
am

Jm
R

+ qt
L

(
φ̃2hT

2

)
t
TR +

∑
a=u,c

qa
L(φ̃1hT

1 )aTR

+ TL

(
χ∗hU

χ

)
j
U j

R + TL

(
χ∗hT

χ

)
TR

+
∑

n=1,2

Jn
L

(
χhD

χ

)
nj

Dj
R + Jn

L

(
χhJ

χ

)
nm

Jm
R + h.c.,

where φ̃1,2 = iσ2φ
∗
1,2 are conjugate fields,



Quark masses

−Ll =
∑

i,j=e.µ.τ

hij
e2

¯̀i
Lφ2ej

R + h.c.

+
∑

i=e,µ;j=e,µ,τ

hij
ν2

¯̀i
Lφ̃2ν

j
R

+
∑

i,j=e,µ,τ

hij
χNν

iT
R ĈχNR +

1
2

N iT
R ĈM ij

NN j
R + h.c.

The U(1)X symmetry distinguishes the quark family qt
L

from the others two qa=u,c
L , while the right-handed

components are universal. Thus, in the absence of the
Yukawa couplings, the model has the global symmetry:

Gglobal(hQ = 0) = SU(2)qa × SU(3)U i × SU(3)Di .



In particular, the SU(2)qa symmetry in the left-handed
sector remains in the model even after the gauge
symmetry breaking. However, the experimental
observation shows that this symmetry does not remain if
the quark masses are taken into account.
The extra U(1)X symmetry is not sufficient to explain the
mass spectrum. Thus, we assume the existence of global
symmetries, Z2 × U(1)T3 .

U(1)T3 : D1
L → D1

L , D2
L → −D2

L ,

Z2 : φ2 → −φ2, Di
R → −Di

R, TL,R → −TL,R.



Thus, by requiring the discrete symmetries, the mass
Lagrangian becomes:

−〈LQ〉 =
∑
i=c,t

U i
L

(
ν1hU

1

)
ij

U j
R + D3

L

(
ν2hD

2

)
3j

Dj
R

+ U i
L

(
ν2hT

2

)
i
TR

+
[
D1

L

(
ν1hJ

1

)
1m

+ D2
L

(
ν2hJ

2

)
2m

+ D3
L

(
ν1hJ

1

)
3m

]
Jm

R

+ TL

(
νχhT

χ

)
TR + Jn

L

(
νχhJ

χ

)
nm

Jm
R + h.c.

−〈LQ〉 = U i
L(MU)ijU

j
R + Di

L(MD)ijD
j
R + U i

L(k)iTR + Di
L(s)imJm

R

+ TL(K )jU
j
R + TL(MT )TR + Jn

L (S)njD
j
R + Jn

L (MJ)nmJm
R + h.c.



The extended mass matrices for up and down sectors are

M ′U =
1√
2


0 0 0 | ν2y1

ν1a21 ν1a22 ν1a23 | 0
ν1a31 ν1a32 ν1a33 | 0

— — — — —
ν2c1 ν2c2 ν2c3 | νχhT

χ

 ,

M ′D =
1√
2



0 0 0 | ν1j11 ν1j12
0 0 0 | ν2i21 ν2i22

ν2B31 ν2B32 ν2B33 | 0 0
— — — — — —

ν2C11 ν2C12 ν2C13 | νχk11 νχk12
ν2C21 ν2C22 ν2C23 | νχk21 νχk22

 .

which exhibit non-vanishing determinant, providing masses to
all quarks. Due to the mixing components, the mass matrices
M ′U,D have the following propertais



The upper left 3× 3 blocks:

Exhibit three massless quarks (m0
u,d ,s = 0) and

Three massive quarks (m0
(c,t),b ∼ ν1,2),

However M ′U,D matrices:

have three eigenvalues mu,d ,s at the MeV scale,
three mc,b,t at the GeV scale and
three mT ,J and the TeV scale.



Specific ansatz

To explore the consequences of the above mass scheme, we
assume the scenery

Where the mixing terms are diagonal
(c2,3 = kij = jij = Cij = 0 for i 6= j , while ν1j11 = ν2i22 = hD
and C11 = C22 = ΓD),
The MU sector have identical Yukawa components except
the top coupling (i.e. aij = YU for ij 6= 33 and a33 = Yt );
MD have identical components (i.e.
B31 = B32 = B33 = YD).
Thus, the matrices become:



M ′U =
1√
2


0 0 0 | ν2y1

ν1YU ν1YU ν1YU | 0
ν1YU ν1YU ν1Yt | 0

— — — — —
ν2c1 0 0 | νχhT

χ

 ,

M ′D =
1√
2



0 0 0 | hD 0
0 0 0 | 0 hD

ν2YD ν2YD ν2YD | 0 0
— — — — — —
ν2ΓD 0 0 | νχk11 0

0 ν2ΓD 0 | 0 νχk22

 .

The above matrices are diagonalized through bi-unitary
transformation of the form mQ = (OQ

L )†M ′QO
Q
R , with mQ a

diagonal matrix with real and positive values. We find for the up
sector the following approximate eigenvalues:



Eigenvalues up masses

λU
1 = mu ≈

(
y1c1ν

2
2√

2hT
χνχ

)
= y1c1

(
ν2

2
2mT

)
λU

2 = mc ≈
ν1

2
√

2
(YU + Yt )

[
1−

√
1 + 4yUtεUt

]
λU

3 = mt ≈
ν1

2
√

2
(YU + Yt )

[
1 +

√
1 + 4yUtεUt

]
λU

4 = mT ≈
1√
2

hT
χνχ, (2)

where we consider that νχ � ν2 and define the parameters

yUt =
YU

YU + Yt
, εUt =

YU − Yt

YU + Yt
. (3)

The parameter εUt "measures" the level of asymmetry of
Yukawa interactions between the top and charm quarks.



Eigenvalue down masses

For the down sector we find:

λD
1 = md ≈

(
ΓDhDν2ν1√

2k11νχ

)
= j12ΓD

(
ν1ν2

2mJ1

)

λD
2 = ms ≈

(
ΓDhDν2ν1√

2k22νχ

)
= j12ΓD

(
ν1ν2

2mJ2

)
λD

3 = mb ≈
1√
2

YDν2

λD
4 = mJ1 ≈

1√
2

k11νχ,

λD
5 = mJ2 ≈

1√
2

k22νχ.



In this case, the ratio between the masses of the down and
strange quarks gives:

md

ms
=

mJ2

mJ1
.

Thus, the ratio between the lightest quarks is determined only
by the mass splitting of the heavy quarks J1 and J2.
Regarding mu and mb, we find that:

mu

mb
=

(
y1c1√
2YD

)
ν2

mT
.

Furthermore, the ratio between the mass of the c- and t-quark
is sensible to the asymmetry parameter according to:

mc

mt
≈ −yUtεUt

1 + yUtεUt
. (4)



Considering the central values, the experimental masses of the
phenomenological quarks are:

mu = 2.3 MeV, md = 4.8 MeV, ms = 95 MeV,
mc = 1.275 GeV, mb = 4.65 GeV, mt = 173.5 GeV

Using the above values, leads to:

yUtεUt =
−mc/mt

1 + mc/mt
≈ −7,3× 10−3

mJ1 ≈ 20 mJ2

ν2

mT
≈

(
5× 10−4

) √2YD

y1c1
.



YU/Yt ≈ 0.007 is required to fit the experimental masses.
This ratio implies an asymmetry factor εUt ≈ −0.985.
For example, if mT ∼ 1 TeV and ν2 ∼ 70 GeV we obtain
YD ∼ 102y1c1.
Finally, we find that the large splitting between md and ms
is consequence of the existence of non-degenerated heavy
massive quarks, J1, J2.
To obtain the observable md/ms ratio we need MJ2 ∼ 1
TeV and MJ1 ∼ 20 TeV.
Thus, the model predicts new quarks which can explain a
mass hierarchy observed among the SM quark families.





Lepton masses and mixing angles

A leptonic mixing matrix is present in weak charged current
which is the product of the rotation matrices of the charged
leptons and neutrinos.
The neutrino oscillation experiments have stablished that
neutrinos are massive and there is lepton flavor violation.
From the neutrino global analysis can be obtained the best
allow region for these 6 parameters: ∆m2

21, ∆m2
31, δCP ,

sin2 θ12, sin2 θ23, sin2 θ13.
If we consider ∆m2

21 > 0 then ∆m2
31 can be positive or

negative. The two cases are named normal ordering and
inverted ordering.



Charged lepton masses

The Yukawa lagrangian for charged leptons according with
U(1)X symmmetry is giving by

−LY ,l =
∑

i,j=e.µ.τ

hij
e2

¯̀i
Lφ2ej

R + h.c.

After symmetry braking the mass matrix is

ME =

 0 heµ
e2 heτ

e2
heµ∗

e2 hµµe2 0
heτ∗

e2 0 hττe2

 v2√
2

where the phases can be taken out of the mass matrix as

MHerm,E = D†2,3(α, β)ME D2,3(α, β)

ME is a real symmetry mass matrix and D2,3(α, β) is the
diagonal phase matrix which can be written as



ME =

 0 η ζ
η h 0
ζ 0 H

 v2√
2

D2,3(α, β) =

 1 0 0
0 eiα 0
0 0 eiβ


In order to have a herarquical lepton masses we will consider
the following relation η, ζ � h� H. The unitary matrix which
dioganized the mass matrix is giving by

Rl =

 1 −η/h −ζ/H
η/h 1 −ηζ/hH
ζ/H 0 1

 1 0 0
0 eiα 0
0 0 eiβ


where the phases can be taken out by refrasing the phases of
the charge leptons.



And the masses for the charged leptons are given by

mτ =
Hv2√

2

mµ =
hv2√

2

me =

(
η2

h
+
ζ2

H

)
v2√

2
.

.

In order to reproduce the experimental values of the masses

me = 0.511 MeV , mµ = 105.66 MeV , mτ = 1776.82 MeV

we take for the Yukawa constants the following values

H = 3.54× 10−2

h = 2.10× 10−3

ζ ≈ 2.45× 10−4 ; η ≈ 0



Neutrino masses

The Yukawa langrangian for neutrinos according to the U(1)X is

−LY ,ν =
∑

i=e,µ;j=e,µ,τ

hij
ν2

¯̀i
Lφ̃2ν

j
R

+
∑

i,j=e,µ,τ

hij
χNν

iT
R CχNR +

1
2

N iT
R CM ij

NN j
R + h.c.

which produces a 9× 9 mass matrix in the base
NL =

(
νL, ν

c
R,N

c
R

)T

−LY ,ν =
1
2

Nc
LMνNL + h.c.

Mν =

 0 mT
ν 0

mν 0 mT
N

0 mN MN





with the following 3× 3 blocks

mν =
v2√

2

hee
ν2 heµ

ν2 heτ
ν2

hµe
ν2 hµµν2 hµτν2
0 0 0

 , mN = hij
χN

νχ√
2
,

MN = µN I ij

The matrixMν can be diagonalize by using the inverse see
saw mechanism, defining the following blocks

Mν6×3 =

(
mν3×3

03×3

)
,MN6×6 =

(
03×3 mT

N3×3

mN3×3 MN3×3

)
Then

Mν =

(
03×3 MT

ν3×6

Mν6×3 MN6×6

)



In order to diagonalize the neutrino mass matrixMν by blocks
we introduce the W matrix

W ≈

((
1− 1

2FF †
)

3×3 F3×6

−F †6×3

(
1− 1

2F †F
)

6×6

)

with
F ≈

(
MT

νM−1
N

)∗
and two blocks 3× 3 and 6× 6, respectively

mactive3×3 ≈ mT
ν (mN)−1 MN

(
mT

N
)−1 mν

mheavy6×6 ≈ MN

where the eigenvalues of mheavy is much higher than the ones
of mact .



To diagonalize mheavy =MN by blocks we consider the Ω
matrix

ΩTMNΩ = ΩT
(

0 mN
mT

N MN

)
Ω

=

(
U∗mdiag

N U† 0
0 V ∗Mdiag

N V †

)

Ω =
1√
2

(
1 1
−1 1

)(
1− SS†

2 S
−S† 1− S†S

2

)

S = −1
4

m−1
N MN

where the masses for right handed sterile neutrinos are

U∗mdiag
N U† = −mN +

MN

2
− 1

8
MNm−1

N MN ≈ −mN

V ∗Mdiag
N V † = mN +

MN

2
+

1
8

MNm−1
N MN ≈ mN



However, to simplify the model we propose diagonal matrices
for mN and MN

mN =

hχN1 0 0
0 hχN2 0
0 0 hχN3

 vχ√
2

MN = µNI3×3

and the the 3× 3 light neutrino mass matrix is

mact =

 (hee
ν2)2 + (hµe

ν2 )2ρ2 × ×
hee
ν2heµ

ν2 + hµe
ν2hµµν2 ρ

2 (heµ
ν2 )2 + (hµµν2 )2ρ2 ×

hee
ν2heτ

ν2 + hµe
ν2hµτν2ρ

2 heµ
ν2heτ

ν2 + hµµν2 hµτν2ρ
2 (heτ

ν2)2 + (hµτν2 )2ρ2


×

v2
2

v2
χ

µN

h2
χN1

where ρ = hχN1/hχN2.
The light neutrino mass, mactive, can be diagonalied by
UT
ν mactiveUν



Solutions

The Uν and ∆m2
ij can be written as function of hij

ν2 and
VEV’s.
Then Pontecorvo Maki Makagawa Sakata matrix is
UPMNS=Ul × Uν

 cθ12cθ13 sθ12cθ13 sθ13eiδ

sθ12cθ23cθ12sθ13sθ23eiδ cθ12cθ23sθ12sθ13sθ23eiδ cθ13sθ23
sθ12sθ23cθ12sθ13cθ23eiδ cθ12sθ23sθ12sθ13cθ23eiδ cθ13cθ23


Defining the mixing angles by

sin2 θ12 =
|Ue2|2

1− |Ue3|2
, sin2 θ23 =

|Uµ3|2

1− |Ue3|2

sin2 θ13 = |Ue3|2



The analysis of solar, atmospheric, reactor and accelerator
neutrino oscillation experiments yields, nu-fit,



Parameter ranges

NuFIT 3.0 (2016)
In the case of normal mass ordering m1 < m2 < m3,

sin2 θ12 = 0.306+0.012
−0.012 , sin2 θ13 = 0.02166+0.00075

−0.00075,

sin2 θ23 = 0.441+0.027
−0.021;

δ ≈ 261+51
−59

∆m2
21 = 7.50+0.19

−0.17 × 10−5eV 2,∆m2
31 = 2.524+0.039

−0.040 × 10−3eV 2

In the case of inverted mass ordering m3 < m1 < m2

sin2 θ12 = 0.306+0.012
−0.012 , sin2 θ13 = 0.02179+0.00076

−0.00076,

sin2 θ23 = 0.587+0.020
−0.024;

δ ≈ 277+40
−46

∆m2
21 = 7.50+0.19

−0.17 × 10−5eV 2,∆m2
31 = −2.514+0.038

−0.041 × 10−3eV 2



Taking the expresions for sin2 θ12, sin2 θ23, sin2 θ13, ∆m2
21 and

∆m2
31 as a function of hij

ν2 and with the nufit data we find the
best values for the Yukawa couplings of the neutrino sector for
the U(1)X model

Normal ordering Inverted ordering
hee
ν2 -0.138 ±0.046 0.820 ±0.023

hµe
ν2 0.250 ±0.050 -0.900 ±0.033

heµ
ν2 -0.670 ±0.050 -0.600 ±0.018

hµµν2 0.260 ±0.200 -0.605 ±0.048
heτ
ν2 -0.610 ±0.063 0.455 ±0.038

hµτν2 -0.250 ±0.243 0.880 ±0.027

Table: Set of neutrino Yukawa couplings for v2 = 200 GeV, vχ = 1
TeV, µN = 500 eV., ρ = 1/

√
2, hχN1 = 1



Conclusion

Find solutions to the anomaly equations without global
symmetry

SU(2)qa
L
⊗ U(3)UR ⊗ U(3)DR

Find solutions to the anomaly equations with big X
numbers and vχ ≈ TeV , but MZ ′ ≈ gX Xvχ bigger than 14
TeV






