$(s-\bar{s})$ asymmetry in proton using wave functions inspired by light front holography Alfredo Vega

Universidad deValparaíso CHILE

In collaboration with I. Schmidt, T. Gutsche and V. Lyubovitskij

SILAFAE 2016, Antigua, Guatemala

November 14, 2016

Outline

Introduction

Brodsky - Ma Model

Holographic Light Front Wave Functions

 $(s - \bar{s})$ Asymmetry with Holographic LFWFs

Introduction

Introduction

In many cases it is necessary to consider contribution of sea quarks and gluons in order to understand hadron properties

Introduction

Sea quarks in nucleon arise through 2 different mechanism:

- Nonperturbative (Intrinsic).
- Perturbative (Extrinsic).

***** Extrinsic sources of sea quarks. ¹

- Arises from gluon radiation to qq pairs.
- Include QCD evolution.
- Strongly peaked at low x.
- Extrinsic sea quarks require $q = \overline{q}$. Asymmetries (very small, low x) arise at NNLO order.

¹S. Catani, D. de Florian, G. Rodrigo and W. Vogelsang, Phys. Rev. Lett. **93**, 152003 (2004).

* Intrinsic sources of sea quarks²

- Arises from fluctuations to $4q + \bar{q}$ Fock states.
- At starting scale, peaked at intermediate x (like valence).
- In general, $q \neq \bar{q}$ for intrinsic sea.

²e.g see F. G. Cao and A. I. Signal, Phys. Rev. D **60**, 074021 (1999).

 $^3 S.$ J. Brodsky and B. Q. Ma, Phys. Lett. B $\boldsymbol{381},$ 317 (1996).

In the light-front formalism the proton state can be expanded in a series of components as

 $|P\rangle = |uud\rangle\psi_{uud/p} + |uudg\rangle\psi_{uudg/p} + \sum_{q\bar{q}}|uudq\bar{q}\rangle\psi_{uudq\bar{q}/p} + \dots$

- It is possible to consider a different light front approach, in which the nucleon has components arising from meson-baryon fluctuations, while these hadronic components are composite systems of quarks.
- In this case the nonperturbative contributions to the s(x) and $\bar{s}(x)$ distributions in the proton can be expressed as convolutions

$$s(x) = \int_x^1 \frac{dy}{y} f_{\Lambda/K\Lambda}(y) q_{s/\Lambda}\left(\frac{x}{y}\right) \quad and \quad \bar{s}(x) = \int_x^1 \frac{dy}{y} f_{K/K\Lambda}(y) q_{\bar{s}/K}\left(\frac{x}{y}\right)$$

 $s(x) = \int_x^1 \frac{dy}{y} f_{\Lambda/K\Lambda}(y) q_{s/\Lambda}\left(\frac{x}{y}\right) \quad \text{and} \quad \bar{s}(x) = \int_x^1 \frac{dy}{y} f_{K/K\Lambda}(y) q_{\bar{s}/K}\left(\frac{x}{y}\right)$

- $q_{s/\Lambda}$ and $q_{\overline{s}/K}$ are distributions of s quarks and \overline{s} antiquarks in the Λ^0 and K^+ , respectively.
- The functions $f_{\Lambda/K\Lambda}(y)$ and $f_{K/K\Lambda}(y)$ describe the probability to find a Λ or a K with light-front momentum fraction y in the $K\Lambda$ state.
- To do calculations we need wave functions.

$$f_{B/BM}(y) = \int \frac{d^2k}{16\pi^3} |\psi_{BM}(y,k)|^2$$

 $q_{s/\Lambda}(x) = \int rac{d^2k}{16\pi^3} |\psi_\Lambda(x,k)|^2$ and $q_{ar{s}/K}(x) = \int rac{d^2k}{16\pi^3} |\psi_K(x,k)|^2$

Brodsky - Ma Model

♦ Basic Idea. ⁴

Comparison of Form Factors in light front and in AdS side, offer us a possibility to relate AdS modes that describe hadrons with LFWF.

In Light Front (for hadrons with two partons),

$$F(q^2) = 2\pi \int_0^1 dx \frac{(1-x)}{x} \int d\zeta \, \zeta J_0(\zeta q \sqrt{\frac{1-x}{x}}) \frac{|\widetilde{\psi}(x,\zeta)|^2}{(1-x)^2}.$$

• In AdS

$$F(q^2) = \int_0^\infty dz \, \Phi(z) J(q^2, z) \Phi(z),$$

where $\Phi(z)$ correspond to AdS modes that represent hadrons, $J(q^2, z)$ it is dual to electromagnetic current.

⁴ S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. **96**, 201601 (2006); Phys. Rev. D **77**, 056007 (2008).

• In Light Front (for hadrons with two partons),

$$F(q^2) = 2\pi \int_0^1 dx \frac{(1-x)}{x} \int d\zeta \, \zeta J_0(\zeta q \sqrt{\frac{1-x}{x}}) \frac{|\tilde{\psi}(x,\zeta)|^2}{(1-x)^2}.$$

In AdS

 $F(q^2) = \int_0^\infty dz \ \Phi(z) J(q^2, z) \Phi(z),$

The trick is to do the next replacement in AdS expression ⁵

$$J_{\kappa}(Q^2,z)
ightarrow zQK_1(zQ) = \int_0^1 dx \ J_0\left(zQ\sqrt{\frac{1-x}{x}}\right)$$

NOTE: Matching works if x in both expressions are the same, and that $\zeta = z$ (Light Front Holography).

⁵ S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. **96**, 201601 (2006); Phys. Rev. D **77**, 056007 (2008).

Considering a soft wall model with a cuadratic dilaton, Brodsky and de Terramond found ⁶

$$\psi(x, \mathbf{b}_{\perp}) = A\sqrt{x(1-x)} e^{-\frac{1}{2}\kappa^2 x(1-x)\mathbf{b}_{\perp}^2}$$

and in momentum space

$$\psi(x,\mathbf{k}_{\perp}) = \frac{4\pi A}{\kappa\sqrt{x(1-x)}} \exp\left(-\frac{\mathbf{k}_{\perp}^2}{2\kappa^2 x(1-x)}\right).$$

⁶ S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. **96**, 201601 (2006); Phys. Rev. D **77**, 056007 (2008).

A generalizations of LFWF discused in previous section looks like

$$\psi(\mathbf{x},\mathbf{k}_{\perp}) = N \frac{4\pi}{\kappa \sqrt{x(1-x)}} g_1(\mathbf{x}) \exp\left(-\frac{\mathbf{k}_{\perp}^2}{2\kappa^2 x(1-x)} g_2(\mathbf{x})\right).$$

You can found some examples in

- S. J. Brodsky and G. F. de Teramond, arXiv:0802.0514 [hep-ph].
- A. V, I. Schmidt, T. Branz, T. Gutsche and V. E. Lyubovitskij, PRD 80, 055014 (2009).
- S. J. Brodsky, F. G. Cao and G. F. de Teramond, PRD 84, 075012 (2011).
- J. Forshaw and R. Sandapen, PRL 109, 081601 (2012).
- S. Chabysheva and J. Hiller, Annals of Physics 337 (2013) 143 152.
- T. Gutsche, V. Lyubovitskij, I. Schmidt and A. V, PRD 87, 056001 (2013).

◊ Background for a generalization to arbitrary twist

In AdS side, form factors in general looks like

$$F(q^2) = \int_{0}^{\infty} dz \, \Phi_{\tau}(z) \mathcal{V}(q^2, z) \Phi_{\tau}(z),$$

Example: Fock expansion in AdS side for Protons ⁷, Deuteron form factors ⁸.

- We consider a shape that fulfill the following constraints:
 - At large scales $\mu \to \infty$ and for $x \to 1$, the wave function must reproduce scaling of PDFs as $(1-x)^{\tau}$.
 - At large Q^2 , the form factors scales as $1/(Q^2)^{\tau-1}$.

⁸Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt y A. V, Phys. Rev. D91 (2015) 114001.

⁷ Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt y A. V, Phys. Rev. D86 (2012) 036007; Phys. Rev. D87 (2013) 016017.

♦ LFWF with Arbitrary Twist ⁹

Recently we have suggested a LFWF at the initial scale μ_0 for hadrons with arbitrary number of constituents that looks like

$$\psi_{\tau}(\mathbf{x}, \mathbf{k}_{\perp}) = N_{\tau} \frac{4\pi}{\kappa} \sqrt{\log(1/x)} (1-x)^{(\tau-4)/2} Exp \left[-\frac{\mathbf{k}_{\perp}^{2}}{2\kappa^{2}} \frac{\log(1/x)}{(1-x)^{2}} \right]$$

- The PDFs $q_{\tau}(x)$ and GPDs $H_{\tau}(x, Q^2)$ in terms of the LFWFs at the initial scale can be calculated.
- We can extend our LFWF to reproduce PFDs and GPDs evolved to an arbitrary scale.

Note: In this wave function we can add massive quarks (grouped in clusters).

⁹Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt y A. V, Phys. Rev. D89 (2014) 054033.

$(s - \bar{s})$ Asymmetry with Holographic LFWFs ¹⁰

 10 A. Vega, I. Schmidt, T. Gutsche and V. E. Lyubovitskij, arXiv:1511.06476 [hep-ph].

 $(s-\bar{s})$ Asymmetry with Holographic LFWFs

*** Summary.**

 $(s-\bar{s})$ Asymmetry with Holographic LFWFs

*** LFWF used.**

♦ Gaussian.

$$\psi(\mathbf{x}, \mathbf{k}) = A \exp\left[-\frac{1}{8\kappa^2} \left(\frac{k^2}{\mathbf{x}(1-\mathbf{x})} + \mu_{12}^2\right)\right]$$

♦ Holographic (Variant I).

$$\psi(x,k) = \frac{A}{\sqrt{x(1-x)}} \exp\left[-\frac{1}{2\kappa^2} \left(\frac{k^2}{x(1-x)} + \mu_{12}^2\right)\right]$$

♦ Holographic (Variant II).

$$\psi_{\tau}(x,k) = A_{\tau}f_{\tau}(x)\exp\left[-\frac{x\log(1/x)}{2\kappa^2(1-x)}\left(\frac{k^2}{x(1-x)} + \mu_{12}^2\right)\right]$$

where

$$\mu_{12}^2 = rac{m_1^2}{x} + rac{m_2^2}{1-x}$$
 and $f_{ au}(x) = rac{4\pi}{\kappa} \sqrt{\log(1/x)} (1-x)^{rac{ au-4}{2}}$

 $(s - \bar{s})$ Asymmetry with a Holographic LFWF

Figure: $s(x) - \bar{s}(x)$ plots for three different types of LFWFs: Gaussian LFWF (large dashed line – κ = 330 MeV), holographic LFWF (variant I), (dot dashed line – κ = 350 MeV) and holographic LFWF (variant II)(continuous line – κ = 350 MeV).

 $(s-\bar{s})$ Asymmetry with a Holographic LFWF

Figure: $xS^- = x(s(x) - \bar{s}(x))$. Green region and small dashed line correspond to MMHT (L.A. Harland-Lane, A.D. Martin, P. Motylinski and R.S.Thorne, Eur. Phys. J. C **75**, 204 (2015).)) that it was generated with APFEL (S. Carrazza, A. Ferrara, D. Palazzo and J. Rojo, J. Phys. G **42**, 057001 (2015).). Other lines correspond to same cases in Fig. 1.

- We used a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the $s(x) \overline{s}(x)$ asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that $s(x) < \overline{s}(x)$ for small values of x and $s(x) > \overline{s}(x)$ in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is closer to recent MMHT parametrization ¹¹.
- Wave functions used could be useful in calculations of other hadron properties.

¹¹L.A. Harland-Lane, A.D. Martin, P. Motylinski and R.S.Thorne, Eur. Phys. J. C 75, 204 (2015).

- We used a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the $s(x) \overline{s}(x)$ asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that $s(x) < \overline{s}(x)$ for small values of x and $s(x) > \overline{s}(x)$ in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is closer to recent MMHT parametrization ¹¹.
- Wave functions used could be useful in calculations of other hadron properties.

¹¹L.A. Harland-Lane, A.D. Martin, P. Motylinski and R.S.Thorne, Eur. Phys. J. C 75, 204 (2015).

- We used a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the $s(x) \overline{s}(x)$ asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that $s(x) < \overline{s}(x)$ for small values of x and $s(x) > \overline{s}(x)$ in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is closer to recent MMHT parametrization ¹¹.
- Wave functions used could be useful in calculations of other hadron properties.

¹¹L.A. Harland-Lane, A.D. Martin, P. Motylinski and R.S.Thorne, Eur. Phys. J. C 75, 204 (2015).

- We used a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the $s(x) \overline{s}(x)$ asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that $s(x) < \overline{s}(x)$ for small values of x and $s(x) > \overline{s}(x)$ in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is closer to recent MMHT parametrization ¹¹.
- Wave functions used could be useful in calculations of other hadron properties.

¹¹L.A. Harland-Lane, A.D. Martin, P. Motylinski and R.S.Thorne, Eur. Phys. J. C 75, 204 (2015).

- We used a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the $s(x) \overline{s}(x)$ asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that $s(x) < \overline{s}(x)$ for small values of x and $s(x) > \overline{s}(x)$ in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is closer to recent MMHT parametrization ¹¹.
- Wave functions used could be useful in calculations of other hadron properties.

¹¹L.A. Harland-Lane, A.D. Martin, P. Motylinski and R.S.Thorne, Eur. Phys. J. C 75, 204 (2015).

