Beyond The SM Searches with CMS

Francisco Yumiceva

Florida Institute of Technology Guatemala, SILAFAE 2016 — Nov. 18, 2016

Introduction

- I will present a brief summary of resent BSM searches with the CMS detector.
- Other results from CMS/Atlas shown in SILAFAE by:
 - Oscar Gonzalez on Higgs results.
 - Sudhir Malik on SUSY searches
 - Leonid Serkin Atlas results
- List of public results on CMS Exotica results at
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html
- List of public results on CMS Beyond Two Generations (B2G) results at
 - <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/index.html</u>

First, our tool

Excellent Detector Performance

Status of CMS as on June 2016 (%)

Data Collected by CMS

CMS Integrated Luminosity, pp

- Excellent and smooth performance by LHC operations
- Data collection efficiency 93%

A few Examples of The Excellent Object Reconstruction

JME-16-004

A few Examples of The Excellent Object Reconstruction

Looking for "bumps"

A B

Reconstructing a Mass = X + Y

Jet(q,g,b)	Jet(q,g,b)
Photon /////	Photon ~~~~~
Muon	Muon
Electron	Electron
Tau	Tau
Missing E _T	Missing E _T
Boosted: $W/Z \rightarrow qq$	Boosted: $W/Z \rightarrow qq$
H→bb H H b	H→bb H b
top two q	top two g

More than 150 ways to make a mass!

Run-1 Analysis with a slight excess

Leptoquarks (LQ)

- Leptoquarks are hypothetical particles carrying both baryon and lepton number.
- LQ states are expected to exist in various extensions of SM e.g. GUT, SUSY with R-parity violation, technicolor, compositeness.
- The spin of the LQ state is taken to be 1 (vector LQ) or 0 (scalar LQ)
- Direct searches for LQ include pair and single productions:

First Generation Leptoquarks (ee) at 8TeV

- Small excess seen in both eejj and ejj channels for the M(LQ)=650 GeV selection.
- Majorana neutrino search also observes small excess in same state.
- Many cross-checks have been done.

Leptoquark Search at 13 TeV

- Analysis followed up with 13 TeV 2015 data.
- No excess is seen in the eejj channel.
- First generation limits 1130 GeV (920 GeV) excluded for $\beta = 1$ ($\beta = 0.5$)
- Second generation limits at 1165 GeV (960 GeV) for $\beta = 1$ ($\beta = 0.5$)

The Diphoton "excess"

Search for resonances with mass above 500 GeV.

- Recall in 2015, Atlas and CMS reported slight excess of events at ~750 GeV using 3fb-1 at 13 TeV.
- Huge excitement in the theory community >450 papers.

The Diphoton Search

- No hint of excess with 2016 data.
 - Local significance of 0.8σ with combined 2015-2016 data

Francisco Yumiceva

The Diphoton Search

arXiv:1609.02507

Local p-values for 2015, 2016, and combined datasets.

Francisco Yumiceva

17

Jet Substructure Techniques

- Several methods for CA, anti-kt jets developed to find structure inside a wide jet.
- Usually applied to jets with p_T >300 GeV.
- Techniques take advantage of
 - Jet observables: jet mass, kT scale, N-subjettiness (τ_N)

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, ..., \delta R_{Nk}) , \text{ with } d_0 \equiv \sum_k p_{\mathrm{T}k} \times R$$

- τ₂/τ₁ (τ₃/τ₂) can be used as discriminators for boosted W/Z
 (top quarks)
- Jet grooming helps to improve the jet mass resolution and reduce sensitivity to multiple pp collisions:
 - mass-drop filtering, trimming, pruning

WW/WZ/ZZ with tagged W/Z jets

- Massive resonance decaying to a pair of vector bosons.
- Limits on Randal-Sandrum (G_{RS}) and bulk (G_{bulk}) gravitons, and W heavy partner (W')
- Search using jet substructure techniques to tag W/Z jets.
- Small excess in fully hadronic channels but not in the lepton plus jets channel.
 - Also excess observed by Atlas (~ same mass, larger excess)

WW/WZ Search at 13 TeV

- Most recent analysis with 2016 data in the semileptonic channel ($|\nu_{jj}\rangle$).
- The dijet system uses jet substructure.
- The WW and WZ analyses are not independent as the mass windows partially overlap.
- No evidence for statistically significance excess in the range 0.6 to 4.5 TeV.

Run-2 Analysis: Dijet searches

Dijet Searches

- Traditional dijet mass search using AK4 jets.
- High mass analysis combined leading jets using ΔR.
- Mass spectra fit with parametric function for background and signal shape from simulation.

			Observed (expected) mass limit [TeV]		
	Model	Final	$12.9{ m fb}^{-1}$	$2.4\mathrm{fb}^{-1}$	$20\mathrm{fb}^{-1}$
		State	13 TeV	13 TeV	8 TeV
	String	qg	7.4 (7.4)	7.0 (6.9)	5.0 (4.9)
,	Scalar diquark	qq	6.9 (6.8)	6.0 (6.1)	4.7 (4.4)
	Axigluon/coloron	$q\overline{q}$	5.5 (5.6)	5.1 (5.1)	3.7 (3.9)
	Excited quark	qg	5.4 (5.4)	5.0 (4.8)	3.5 (3.7)
	Color-octet scalar ($k_s^2 = 1/2$)	gg	3.0 (3.3)	—	—
	W′	$q\overline{q}$	2.7 (3.1)	2.6 (2.3)	2.2 (2.2)
	Ζ′	$q\overline{q}$	2.1 (2.3)	—	1.7 (1.8)
	RS Graviton	qq, gg	1.9 (1.8)		1.6 (1.3)

Francisco Yumiceva

Light Vector Resonance

EXO-16-030

- Search in the region 100 GeV $< m_{SD} < 300$ GeV
- Use substructure techniques to reconstruct low mass wide jet.
- Multijet QCD background estimated from data in sidebands.
- Most stringent constraints for m(Z') < 300 GeV.

Low Mass Dijet with substructure

- RPV models of boosted stops decaying to light quarks.
- H_T>900 GeV. Pruning & N-subjettiness applied to jets.

Run-2 Analysis: Z' boson searches

- Background fit using a parametric function.
- For a Sequential SM Z'_{SSM} , masses excluded < 4 TeV.
- For a GUT Z'_{ψ} model, masses excluded < 3.5 TeV.

Z' to tt (semileptonic)

B2G-15-002

Z' to tt (fully hadronic)

- Apply b-tagging algorithm to subjets.
- Use substructure to tag top jets.
- Analysis done in 6 samples: 0 b, 1 b, 2 b jets and rapidity difference $|\Delta y| < 1$ and $|\Delta y| > 1$.

Mass Exclusion Limits							
Signal Model	Exclusion Ranges (TeV)						
	Expected	Observed					
Z' (1% Width)	1.2 – 1.6	1.4 – 1.6					
Z' (10% Width)	1.0 - 3.1	1.0 - 3.3					
Z' (30% Width)	1.0 - 3.7	1.0 - 3.8					
RS Gluon	1.0 - 2.5	1 - 2.4					

B2G-15-003

Z' to tT' (fully hadronic)

B2G-16-013

- Search for heavy spin-1 Z' decaying to a top quark and a heavy vector-like top partner T' decaying to Wb, and W to quarks.
- Substructure is used to tag a W and top jets.
- Z'(tT') is excluded with upper cross section limits ranging 0.13 to 11 pb.

SSM Z' boson with masses < 2.1 TeV are excluded

Run-2 Analysis: W' searches

W' to lepton+ ν

Nov 2016

 SSM W' decaying to electron/muon + missing E_T is excluded below 4.4 TeV

W'_R to tb

- Search for W' with purely right handed coupling. Two channels.
 - All hadronic channel uses jet substructure
 - Lepton+jets channels use reconstruction of top quark.
- Limits on W'_R are set between 2 and 2.7 TeV depending on the right handed neutrino mass

W' to τv

Nov 2016

• W' decaying to tau (hadronic) and ν excluded from 1 to 3.3 TeV

Run-2 Analysis: Dark Matter searches

Dark Matter Searches

- Three main processes to detect dark matter (DM):
 - DM nucleon scattering direct detection (DD)
 - Indirect detection annihilation (ID)
 - Pair production at colliders
- These processes are just permutations of the same Feynman diagram.
- DM particles can be observed at the LHC when they are produced in association with a SM particle (g, q, γ, Z, W, H).
- Each model is characterized by 4 parameters:
 - DM mass (m_{χ}) , mediator mass (M_{med}) , mediator coupling to quarks (g_q) , and mediator coupling to DM (g_{DM}) spin-0
 - Signal based on simplified models that allow a more fair comparison with DD results

mono-business

Presentation of DM Search Results

- In 2015, the Atlas/CMS DM forum make recommendations for presentation of results from the LHC:
 - arXiv:1507.00966
 - arXiv:1603.04156
- Project full 4 dimensional parameter space to only 2 dimensions.
- Fix a set of coupling g_q and g_{DM} and produce a mass-mass plot:
 - $g_{DM} = 1$, $g_q = 0.25$ for vector and axial cases
 - $g_{DM} = g_q = 1$ for scalar and pseudoscalar cases
 - Values motivated by requirements on the mediator width <10% of its mass, and current dijet constraints.

DM: Monojet and Mono-V

EXO-16-037

- Two event categories: monojets and mono-V boosted.
- Background estimated with a fit to control regions $\mu\mu/ee+jets$, γ +jets, and $\mu/e+jets$ with "ME_T" defined ignoring the μ or γ .

Monojet and Mono-V Searches

Exclusions: • Vector and axial-vector at <1.95 TeV

EXO-16-037

- pseudo scalar < 430 GeV and
- scalar <100 GeV

EXO-16-039

Mono-photon

- Photon $E_T > 175 \text{ GeV}$
- Missing $E_T > 170 \text{ GeV}$
- Dominant background are Z(nunu)+gamma and W(Inu)+gamma

Francisco Yumiceva

ą

Mono-Z(ℓ+ℓ-)

- Missing $E_T + Z$ (dilepton) signature:
 - Select dilepton around Z mass window
 - Missing $E_T > 100 \text{ GeV}$
- Dominant background are $Z(\ell \ell)Z(\nu \nu)$ and $Z(\ell \ell)W(\ell \nu)$
- Missing E_T shape analysis

EXO-16-038

Mono-Z(ℓ+ℓ-) Comparison with (I)DD

EXO-16-038

Mono-Higgs

Z'

 A^0

- Channel: Missing $E_T + H(bb)$
 - Missing $E_T > 170 \text{ GeV}$
 - Selected boosted Higgs and resolved substructure
- Channel: Missing $E_T + H(\gamma\gamma)$
 - Missing $E_T > 105 \text{ GeV}$
 - $120 < M(\gamma \gamma) < 130 \text{ GeV}$
- Interpretation in the context of 2HDM

EXO-16-040

- Possible via t-channel FCNC mediator exchange or via s-channel exchange of a charged colored scalar.
- Explore boosted all-hadronic decay mode of top quark.
 - Missing $E_T > 250$ GeV.
 - Top tagging jets with R=1.5

Mono-Top

Mono-bb(tt) Production

g receeded

b(t)

b(t)

Nov 2016

Φ

- Probes (pseudo)scalar mediator with Higgs-like couplings.
- Combination of single and double b tag channels.
- Also sensitive to tt+DM production through b quarks from top quark decays.

Mono-tt P

- Missing $E_T > 200,160, 50$ GeV fc
- tt dominant background

Francisco Yumiceva

EXO-16-005

Dark Matter - Reuse Dijet Search CMS-DP-2016-057

- Dijets provide stringent constraints for certain couplings.
- Dijet limits on axial-vector mediator, compared with mono-DM searches

Dark Matter - Limit bar plot

CMS-DP-2016-057

CMS Exotica Physics Group Summary – ICHEP, 2016

Francisco Yumiceva

BSM - Grand Summary (2)

^{\$}model-independent

still waiting for the coming of New Physics

Nov 2016

Museum Hotel Santo Domingo, Antigua

a long journey still ahead of us

Conclusions

- A large number of searches for new physics are on going and covering "all" possible phase space available at the LHC.
- Some of the excess from Run-1 are vanishing with early Run-2 data.
- Analyses are being optimized and reloading the full Run-2 data set. Stay tune for updates.
- What is next?
 - Atlas and CMS detectors are being upgraded during the technical stop 2016-2017.
 - CMS upgrade of pixel, calorimeter, trigger detectors.
 - These improvements will help extent the search for new physics

Conclusions

- A large number of searches for new physics are on going and covering "all" possible phase space available at the LHC.
- Some of the excess from Run-1 are vanishing with early Run-2 data.
- Analyses are being optimized and reloading the full Run-2 data set. Stay tune for updates.
- What is next?
 - Atlas and CMS detectors are being upgraded during the technical stop 2016-2017.
 - CMS upgrade of pixel, calorimeter, trigger detectors.
 - These improvements will help extent the search for new physics

Gracias

Backup Slides

Presented CMS analyses

- EXO-12-041
- EXO-12-024
- EXO-16-027
- EXO-16-029
- EXO-16-031
- B2G-15-002
- B2G-15-003
- B2G-16-017
- B2G-16-009
- EXO-16-008
- EXO-16-006

Leptoquark 1st and 2nd Generation Limits 8TeV

Leptoquark 1st (ee) at 13TeV with 2.6 fb⁻¹

Boosted VV

Jet substructure Techniques

(a) The mass-drop and symmetric splitting criteria.

Figure 4. Diagram depicting the jet trimming procedure.