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flow of a double trace non charged fermionic operator in a quark-gluon plasma 
subject to the influence of a strong magnetic field and compare it with the results 
for the case at zero temperature and no magnetic field, where the flow between 
two fixed points is observed.

The holographic renormalization program has been part of the gauge/gravity 
correspondence almost since its origins, and in particular the Wilsonian approach 
within this program has been the object of much attention in recent years 
[Heemskerk, Faulkner, K. Skenderis]. This approach provides a systematic 
framework to treat the properties of the renormalization flow in a gauge theory at 
a non-perturbative level by means of calculations in a dual gravitational theory.
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In general these modifications are admissible as long as a five dimensional 
subspace still approaches asymptotically AdS space close to its boundary, and 
the remaining compact subspace retains enough symmetry to describe the dual 
gauge theory. In all these constructions, the directions along the compact 
manifold are dual to internal degrees of freedom in the gauge theory, while the 
directions along the boundary of the asymptotic AdS are in correspondence with 
the directions in which the dual theory propagates.
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subspace still approaches asymptotically AdS space close to its boundary, and 
the remaining compact subspace retains enough symmetry to describe the dual 
gauge theory. In all these constructions, the directions along the compact 
manifold are dual to internal degrees of freedom in the gauge theory, while the 
directions along the boundary of the asymptotic AdS are in correspondence with 
the directions in which the dual theory propagates.

Of particular importance to the renormalization program is that the direction that 
extends away from the boundary in to the bulk of the asymptotic AdS space, that 
is, the radial direction of this space, is related to the energy scale in the gauge 
theory.
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Since the gauge/gravity correspondence relates the high energy behavior of 
the field theory with the low energy regime of the string theory, to study 
high energy processes in the field theory, we can approximate its dual to be 
governed by the low energy limit of type IIB string theory, that is, type IIB 
supergravity,
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The bulk equations

For all elements of the family, except the one for 
b=0, the near horizon geometry is that of a BTZ 
black hole times a flat two dimensional space, 
given by inserting

UBTZ(r) = 3(r2 � r2h), VBTZ(r) =
Bp
3

and WBTZ(r) = 3r2,

While the geometry close to the boundary is 
the asympto t ic AdS5 needed in the 
correspondence. As the intensity of the 
magnetic field increases, the transition from the 
near horizon geometry in to the AdS5 zone 
takes place at a larger radius.
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SB is a boundary term that will be the topic of discussion bellow. For this work,  
the psi will be considered to bare no charge to couple to the magnetic field so its 
minimal coupling to A will be left out, and yet we will see that there is interesting 
physics in this approach
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Deforming the theory

The considerations just made, make it so that the boundary term we added is 
dual to a double trace operator that breaks chirality, making it a likely candidate to 
model. The boundary conditions  now read

This result is independent of the metric, and it will be so as long as the metric 
is diagonal and depends only on the radial coordinate, which are conditions 
satisfied in particular by pure AdS.

f2 + g2 = 1,
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The RG flow.

The beta functions satisfy

These equations are very similar to the pure AdS results. But here the warping 
factor of the metric act  as an energy correction 
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force over a particle in directions perpendicular to the magnetic field, increases 
linearly and without a bound as the intensity of the field grows, while it stays 
bounded for propagation along the field.
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Logarithm of the metric functions vs. logarithm of r. V in the first plot shows how it 
starts as a large constant close to the horizon and it transitions in to going like 
r^2. W in the second plot shows how it starts as 3r^2, shown as one of the 
dotted lines, close to the horizon and it transitions in to going like r^2, shown as 
the other dotted line. U in the third plot shows how it starts in zero, behaves like 
3r^2, shown as one of the dotted lines, for some intermediate values of r and 
then transitions in to going like r^2, shown as the other dotted line. The radius at 
which the transition happens for the three metric coefficients increases with the 
intensity of b.
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V'/V, as function of the energy scale. The highest line corresponds to the b=0 
case and higher values of b show that we get as close to zero as desired, while 
W'/W and U'/U increase (not shown, bounded by the  BTZ background).
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V/U and W/U as function of the energy. In the plot for V/U the lowest line 
corresponds to the b=0 case and higher values show that this ratio can be as 
high as desired. In the plot for W/U the lowest line again corresponds to  b=0 and 
higher values shows a quickly convergence to the BTZ case. This plot shows the 
value of the energy scale at which the ratio W/U equals 1.1 for different values of 
b, and indicates that this energy scale quickly approaches a constant as b grows, 
so this ratio gets close to one for low energy scales regardless of the intensity of 
b.
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1) The separation of the theories in the energy scale is increased by the 
introduction of the background magnetic field and grows with its intensity.

3) From the computation of the correlator, we saw that the probability for 
propagation in directions perpendicular to the magnetic field vanish as the 
background field increases. This would imply that the detected ellipticity for a 
collision would receive an extra contribution from the non centrality through this 
mechanism, making it larger than anticipated if this is not taken in to account. 
This could be of particular relevance for experiments where measurements are 
used to determine the Fourier component vs of the azimuthal anisotropy.

2) The difference in the coupling constant in the infrared and ultraviolet theories 
increases with the intensity of the field. So if fundamental physics are fixed at a 
very high energy scale, the apparent coupling that will be observed in a low 
energy experiment will depend on whether or not a magnetic field is affecting the 
theory.



Conclusions



Conclusions

Thank you




