Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Programas de Licenciatura

Programa de Física nuclear y de partículas

1 Descripción del Curso

Nombre: Física nuclear y de partículas Código: F702 Prerrequisitos: F602 – F603 Créditos: 5

Profesor: Edgar Cifuentes Semestre: Segundo, 2017

Es un curso introductorio a la física nuclear y de partículas, donde se sientan las bases teóricas sobre las que se sustentan los modelos nucleares y de física de altas energías, continuando con la fenomenología nuclear y de partículas y su relación con los métodos experimentales. Para finalizar con la construcción de modelos nucleares y el modelo estándar de la física de partículas

2 Competencias

2.1 Competencias generales

- 2.1.1 Plantear, analizar y resolver problemas físicos, tanto teóricos como experimentales, mediante la utilización de métodos analíticos, experimentales o numéricos.
- 2.1.2 Construir modelos simplificados que describan una situación compleja, identificando sus elementos esenciales y efectuando las aproximaciones necesarias.
- 2.1.3 Percibir las analogías entre situaciones aparentemente diversas, utilizando soluciones conocidas en la resolución de problemas nuevos.
- 2.1.4 Verificar y evaluar el ajuste de modelos a la realidad, identificando su dominio de validez.
- 2.1.5 Aplicar el conocimiento teórico de la física en la realización e interpretación de experimentos.
- 2.1.6 Demostrar una comprensión profunda de los conceptos y principios fundamentales, tanto de la física clásica como de la física moderna.
- 2.1.7 Desarrollar argumentaciones válidas en el ámbito de la física, identificando hipótesis y conclusiones.
- 2.1.8 Sintetizar soluciones particulares, extendiéndolas hacia principios, leves o teorías más generales.
- 2.1.9 Estimar el orden de magnitud de cantidades mensurables para interpretar fenómenos diversos.
- 2.1.10 Describir y explicar fenómenos naturales y procesos tecnológicos en términos de conceptos, principios y teorías físicas.

2.2 Competencias específicas

- a) Aplicar los conceptos de física fundamental para comprender los modelos nucleares y de física de partículas
- b) Describir con propiedad los modelos nucleares y de física de partículas
- c) Demostrar la comprensión de los modelos nucleares y de física de partículas con la solución de los ejercicio propuestos.

3 Unidades

3.1 Conceptos Básicos

Descripción: Algunos resultados de la Mecánica Cuántica, Cinemática Relativista, Dispersión de Rutherford, Teorías de Gauge.

Duración: 12 períodos de 50 minutos

Metodología: Los períodos de clase son mayoritariamnte magistrales, con la solución de algunos ejercicios guías, para que el estudiante demuestre su aprendizaje con la resolución de los ejercicios propuestos.

Evaluación: Se evaluará por medio de una tarea y un problema en el primer exámen parcial

3.2 La física nuclear y la física de partículas

Descripción: Origen de la física nuclear y de la física de partículas, la relatividad y las antipartículas, simetrías y leyes de conservación, las interacciones por medio de los diagramas de Feynman, fuerza como intercambio de partículas y el potencial de Yukawa, las cantidades observables, la sección eficaz y el decaimiento de las partículas

Duración: 12 períodos de 50 minutos

Metodología: Los períodos de clase son mayoritariamnte magistrales, con la solución de algunos ejercicios guías, para que el estudiante demuestre su aprendizaje con la resolución de los ejercicios propuestos.

Evaluación: Se evaluará por medio de una tarea y un problema en el primer exámen parcial

3.3 Fenomenología nuclear

Descripción: Masa y energía de ligadura, estabilidad nuclear y decaimiento radiactivo, modelo de la gota líquida, fenomenología del decaimiento β , fisión, decaimiento γ y reacciones nucleares

Duración: 12 períodos de 50 minutos

Metodología: Los períodos de clase son mayoritariamnte magistrales, con la solución de algunos ejercicios guías, para que el estudiante demuestre su aprendizaje con la resolución de los ejercicios propuestos.

Evaluación: Se evaluará por medio de una tarea y un problema en el primer exámen parcial

3.4 Fenomenología de las partículas elementales

Descripción: Multipletes de leptones y número leptónico, neutrinos, quarks, generaciones de quarks y número de quarks, hadrones, sabores de y multipletes de carga, el modelo de quarks, masas y momenta magnéticos.

Duración: 12 períodos de 50 minutos

Metodología: Los períodos de clase son mayoritariamnte magistrales, con la solución de algunos ejercicios guías, para que el estudiante demuestre su aprendizaje con la resolución de los ejercicios propuestos.

Evaluación: Se evaluará por medio de una tarea y un problema en el primer exámen parcial

3.5 Métodos experimentales

Descripción: Aceleradores y haces de partículas, interacción de las partículas con la materia, pérdidas de energía por ionización y radiación, detectores de partículas, detectores de gas, contadores de centelleo, detectores de semiconductores, identificación de partículas, calorímetros, detectores en capas.

Duración: 12 períodos de 50 minutos

Metodología: Los períodos de clase son mayoritariamnte magistrales, con la solución de algunos ejercicios guías, para que el estudiante demuestre su aprendizaje con la resolución de los ejercicios propuestos.

Evaluación: Se evaluará por medio de una tarea y un problema en el primer exámen parcial

4 Evaluación del curso

Los porcentajes asignados a cada uno de los elementos de la evaluación están de acuerdo con el Reglamento General de Evaluación y Promoción del Estudiante de la Universidad de San Carlos de Guatemala

6 Tareas, una por unidad 2 Exámenes parciales 63 puntos Examen final 25 puntos Total 100 puntos

5 Bibliografía

- 1. Brian R. Martin, "Nuclear and particle physics, an introduction", John Wiley & Sons, 2006, West Sussex, Inglaterra
- 2. Particle Data Group, http://pdg.lbl.gov/
- 3. A. Das y T. Ferbel, "Introduction to nuclear and particle physics", John Wiley & Sons, 1994, New York, EUA

http://ecfm.usac.edu.gt/programas