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Existe la creencia de que los arboles respiran el aliento de las personas que habitan las ciudades
enterradas...
Leyendas de Guatemala
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Standard Model

Gauge bosons

1

handed quirality(L).

In the SM, the neutrinos are massless and have left




Neutrino Oscillations

e Nobel Prize in Physics 2015

The proportion of each flavor in the same neutrino beam changes in time. It is proportional
to the distance to the source.
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Figure 2.

Neutrinos can oscillate only if their mass is not zero.->Physics beyond the SM.



Very Special Relativity

A. Cohen and S. Glashow, Phys.Rev.Lett.97:021601,2006:

All kinematical effects associated to invariance under the Lorentz group(6 parameters) can
be obtained from four parameters subgroups of the Lorentz group, opening the road to new
predictions which violate Lorentz symmetry, but preserve the symmetry under such subgroups.

e VSR implies special relativity (SR) in the context of local quantum field theory or of CP
conservation.

e Most interesting Subgroup of the Lorentz Group:Hom(2), 3 parameters; Sim(2) , 4
parameters.

There are no invariant tensors for these cases. So SR kinematics is preserved.

No local Lorentz symmetry-breaking operator preserving either of these groups exists.



T =Ky +J, To=K,—J,
Hom(2): generators: Ty, Ts, K,
Sim(2): generators: 11, To, K, J,

n=(1,0,0,1) n.n=0
n is invariant under 74,75, J,, but under boosts in the z-direction (generated by K.)

n—>e¢n

p1, p2 particle momenta.

VSR but not SR invariant: 22"
p2.n




Neutrino mass in VSR

Neutrino mass in VSR:




Very Special Relativity Standard Model

J.A., R. Avila and P. Gonzilez, Electroweak standard model with very special
relativity, PHYSICAL REVIEW D 91, 105007 (2015)

e LHC do not see new particles or symmetries. It just ratifies the SM structure:particles and
symmetries.

e Neutrino are massless in the SM, but in nature they are massive(neutrino oscillations).
e \We want to keep the particles and symmetries of the SM, but provide masses for neutrinos

e The VSR SM is a simple theory with SU(2)x U(1)r symmetry, with the same number
of leptons and gauge fields as in the SM.

e It is renormalizable and unitarity is preserved.

e New non-local terms that violate Lorentz invariance are able to describe in a
straightforward manner the observed neutrino oscillations.

e We predict new processes such as the decay p->e+-, which are forbidden in the SM.



n.n=>_0
e In the VSR SM the electron neutrino and the electron belong to a doublet under SU(2) 1

e m is the VSR mass of both electron and neutrino. After spontaneous symmetry
breaking(SSB). the electron adquires an additional mass M. The electron mass is M, =

VvV M?+m?2.

e The neutrino mass is not affected by SSB: M, =m.



Feynman Rules

Q y 3

Electron propagator:
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Photon propagator:

Do Ny N zmQG NuPa + NaPu zm%;
po— 2 2+ 2 .2 2 +
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3-vertex:

i(ie)25pm? n,my, (n.(p"+ p+q) "1 (n.q) " (n.(p+ q)) "t + (n.(p" + @) ]




Mandelstam-Leibbrandt(ML)prescription

o [ dp [p2+2p.1q_m2]a nl.p has an infrared divergence when n.p =20
e Light-Cone gauge quantization of gauge and string theories.

=0 nn=1

S|

e Mandelstam-Leibbrandt prescription(ML):n—lp =lim. ¢ #jﬂ.g,

e ML has very nice properties: The poles in the pg complex plane are situated such that the
Wick's rotation from Euclidean to Minkowsky space is justified; it preserves naive power
counting of loop integrals; and in gauge theories, it maintains the Ward identities of the
gauge symmetry. It can be derived from Canonical Quantization.



A significant simplification of ML

e J.A. Mandelstam-Leibbrandt prescription,Phys.Rev. D93 (2016) no.6,
065033,Erratum: Phys.Rev. D94 (2016) no.4, 049901

e Let us compute the following simple integral:

2
A, = [dp S (™) pu
n.p

where f is an arbitrary function.dp is the integration measure in d dimensional space and
n, is a fixed null vector(n.n=0). This integral is infrared divergent when n.p=0.

e The ML is:

1 : p.N
—— = lim —
n.p e—0n.pp.n-—+1e

(1)

where 77, is a new null vector with the property n.n = 1.

e To compute A, we have to know the specific form of f, provide an specific form of 7,

2
and 7n,,, and evaluate the residues of all poles of % in the pp complex plane, a rather

formidable task for an arbitrary f.



e Instead we want to point out the following symmetry:
N, — Ay, i, — A1, A#0,\eR (2)

e [t preserves the definitions of n,, and 7n,,:

e We see from (1) that:

n.p n.p



Now we compute A, based on its symmetries. It is a Lorentz vector which scales under
(2) as A=, The only Lorentz vectors we have available in this case are n,, and 77,,. But
(2) forbids n,. That is:

Multiply by n, to find A-n=a. Thus a= [ dpf(p?). Finally:

2
dp f(i;pu :ﬁM/dpf(pQ)

By the same token we find

dp f(p*) pupvpx = af

- Mugor)s +b(ny)s

A/JJ/)\ —

where ()s means symmetric in all Lorentz indices.

We get:

1
Auw\n/\ = Egu,,/dpf(pQ)pQ = a(uny + Ny + guun.n) + b(n.anyn, +n.anmn,)

a+bn.ﬁ:0,a:%/dpf(p2)p2



The integrals on p,, are dimensionally regularized.

e Therefore:

2
ap IR 2 [ap ()2 (,9,0)s = (ions)s)



Generic Integrals

e We consider now a more general integral. We will see here that regularity of the answer
will determine it uniquely.

Consider:

2
Az/dp F(pn_’]fm =1.qf(q* n.qn.q) (3)

q,. is an external momentum, a Lorentz vector. F'is an arbitrary function. The last relation
follows from (2), for a certain f we will find in the following.

o We get

0A Fup,
W—/dp np

(0, 9) + 200,05 (o, 5) + (2.0 4 ngriam, 5o,y

We defined u=p.q,x = q¢* y=n.qn.q. (), means derivative respects to u.

0A
g /dpF,u = g(r)=

Fo ) +25 - F @)+ v 2,y (4)



Assuming that the solution and its partial derivatives are finite in the neighborhood of
y = 0, it follows from the equation that f(z,0) = g(x). That is the partial differential
equation has a unique regular solution.

We can find the solution of (4) using the method of characteristics.



Application to loop integrals

1. Using dimensional regularization, we obtain:

1 1
b /dp (%4 2p.q —m?|* (n.p)®
(—=1)2F % (m)“(— 1

INa+b—w),_ _1 1 B
2 Tro (7”"“’)b/O W e e —mmgngy e Y=Y )

2. Other integrals can be obtained deriving respects to g,

/dp Li L=
%+ 2p.q —m2]etL (n.p)b

1

(D2 O g [

(_1)a—l_bi(W)w(_Q)bF(I?(:i_;);&);j) (ﬁ.q)b/O ditb—1 (%2_+t;n;q§;t—)|_aiﬁﬁﬁ)w (6)




Sim(2) invariant integrals

ML does not preserve Sim(2) symmetry. It requieres a second fixes null vector 7.

It is possible to modify ML such that it is compatible with Sim(2) symmetry.(J.A. to be
published)

/dp 1 1
[p?+2p.q — m?] (n.p)®
yL(a+b—w) 1 1

(~D) i) (-2 ) |ttt

w=d/2

We trade n,, by ¢,. i.e. n,=an,+bq,. From the conditions: n.n =0,7.n =1 we get
2

2 ("r;]- g tH +

Therefore, for instance,

du

/d 1 1

Pl 2pq—mIe (np)b

—1)eFbi ()@ (— F(&-{-b—&)) q2 b -1 1 W —
v i e oy ) [ 4t G e =4

Notice that now we respect the Sim/(2) invariance of the original integral.

In the following we use the modified ML prescription.



Vacuum Polarization




Vacuum Polarization integrals

1
dx
1 S o NuNy anV‘i‘nVQ/L . . 4 2 2'4 —2 1 1 —
e (q<n.c_z>2+ "y o JACCHAT) Ty 108
¢*(1 —x)*

mQJr]WQq?(lgz:)gz:]jL

(i)~ ) o [ dal(2- ) =)

A=M?*+m?*—(1—x)xg’

Computing the finite part and normalizing at ¢> =0, we get:

Ward Identity:q,II,, =0




Physical Interpretation

jM(Q>D,w/HVaDa[3jB<_Q>

- 1 e? 1
(Q>(1+§m24ﬂ2 M2)

e

o Effective Potential V(r)= éf;f d3qetd-"

o Additional contribution to the delta potential:—— o’ 14+ m® 75
P T 15 M2 M2 24

e

e From the bound on the fine structure

Aa m? 75
~ <1078
Q M?248 U
M <194

Mr\/



Vertex Correction




Form Factors in the NR limit(Work in progress)
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Conclusions and open problems

e We applied the VSR formalism to the Standard Model. This modification admits the
generation of a neutrino mass without lepton number violation and without sterile
neutrinos or another types of additional particles.

e Now we have non local mass terms that violate Lorentz invariance.

e The model is renormalizable and unitarity of the S matrix is preserved.
e We study the QED part of the VSR SM.Feynman rules are obtained

e We invented a Sim(2) invariant dimensional regularization

e We computed the vacuum polarization graphs. They satisfy the Ward identity

e Bounds on the mass on the neutrino are obtained.—— <107

e More bounds on the mass of the neutrino from new form factors and the anomalous
magnetic moment of the electron. Work in progress.

e Euler-Heisenberg Lagrangian?. The null vector n,, should appear explicitly->anisotropy

e Anisotropic propagation of photons in the Universe?

THANK YQOU!



