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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
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mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
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is due to non invariance of path integral measure:

[Fujikawa (1979)]
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.

[Baluni (1979), Crewther et al. (1979)]



•   ≠ 0 implies  a non-zero neutron EDM  

 E. Nardi (INFN-LNF) - Redefining the axion window                03/25  

A small value problem

•However, implying:

•This is qualitatively different from other small values problems: 

5

1013 (49)

1017 (50)

1026 (51)

✓ (52)

q ! ei�5↵q (53)

L
QCD

=
X

q

q
�
i /D �mqe

i✓q
�
q � 1

4
Gµ⌫

a Ga
µ⌫ � ✓

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (54)

✓q ! (55)

✓q ! ✓q + 2↵ (56)

✓ ! ✓ + 2↵ (57)

DqDq ! exp

✓
�i↵

Z
d4x

↵s

4⇡
Gµ⌫

a G̃a
µ⌫

◆
DqDq (58)

✓ = ✓ � ✓q (59)

dn ⇡ e
��✓
��m2

⇡

m3

n

⇡ 10�16

��✓
�� e cm (60)

dn . 3 · 10�26e cm (61)

✓ . 10�10 (62)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.

5

1013 (49)

1017 (50)

1026 (51)

✓ (52)

q ! ei�5↵q (53)

L
QCD

=
X

q

q
�
i /D �mqe

i✓q
�
q � 1

4
Gµ⌫

a Ga
µ⌫ � ✓

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (54)

✓q ! (55)

✓q ! ✓q + 2↵ (56)

✓ ! ✓ + 2↵ (57)

DqDq ! exp

✓
�i↵

Z
d4x

↵s

4⇡
Gµ⌫

a G̃a
µ⌫

◆
DqDq (58)

✓ = ✓ � ✓q (59)

dn ⇡ e
��✓
��m2

⇡

m3

n

⇡ 10�16

��✓
�� e cm (60)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking

5

1013 (49)

1017 (50)

1026 (51)

✓ (52)

q ! ei�5↵q (53)

L
QCD

=
X

q

q
�
i /D �mqe

i✓q
�
q � 1

4
Gµ⌫

a Ga
µ⌫ � ✓

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (54)

✓q ! (55)

✓q ! ✓q + 2↵ (56)

✓ ! ✓ + 2↵ (57)

DqDq ! exp

✓
�i↵

Z
d4x

↵s

4⇡
Gµ⌫

a G̃a
µ⌫

◆
DqDq (58)

✓ = ✓ � ✓q (59)

dn ⇡ e
��✓
��m2

⇡

m3

n

⇡ 10�16

��✓
�� e cm (60)

dn . 3 · 10�26e cm (61)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,

5

1013 (49)

1017 (50)

1026 (51)

✓ (52)

q ! ei�5↵q (53)

L
QCD

=
X

q

q
�
i /D �mqe

i✓q
�
q � 1

4
Gµ⌫

a Ga
µ⌫ � ✓

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (54)

✓q ! (55)

✓q ! ✓q + 2↵ (56)

✓ ! ✓ + 2↵ (57)

DqDq ! exp

✓
�i↵

Z
d4x

↵s

4⇡
Gµ⌫

a G̃a
µ⌫

◆
DqDq (58)

✓ = ✓ � ✓q (59)

dn ⇡ e
��✓
��m2

⇡

m3

n

⇡ 10�16

��✓
�� e cm (60)

dn . 3 · 10�26e cm (61)

✓ . 10�10 (62)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
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act with each other. We are therefore led to contemplate diagrams where the fermion 
line is festooned with non-interacting bosons. The diagram will have a factor from 
the q~-boson vertices of  the generic form 

Tr(Ut  rn nt Um n2 U? m n3 Umn4 ) , (4.1) 

and a logarithmic divergence which will be identical for diagrams of identical topo- 
logy, but will in general differ for different topologies. 

It is easy to satisfy oneself using the Feynman rules of  fig. 8 that the powers 
nl ... n4 in the generic expression (4.1) must all be even, and there will be a phase 
and hence CP violation only if they are all >~2. The expression (4.1) will be sym- 
metric, and hence no phase CP violation will arise, from any of  the following low- 
order combinations of  the hi: 

/71 =n2  =n3  =n4  = 2 ,  

n 1 = 4, n 2 = n 3 = n 4 = 2, and permutations thereof ; 

Ftl = /'/3 = 4 ,  /7 2 = / 7  4 = 2 ,  

n 2 = n 4 = 4, n 1 =/73 = 2 . (4.2) 

The first combinations of  the type (4.1) which might give a phase and hence CP vio- 
lation are therefore 

4 4 t 2 2 Tr(UCma Umc U m a  Umc) , (4.3a) 

Tr(Utma 2 UrnacUtm4aUm2c). (4.3b) 

We see from (4.3) that the lowest order in which a phase is potentially available is 
12th order. To get a divergence in this order all the quark mass factors in (4.3)would 
have to come from Higgs couplings, and there would be no vector boson couplings. 
But for every diagram on a catho-quark [29] line giving an expression of  type (4.3a) 
there will be a diagram on an ano-quark [29] fine giving an expression of  type (4.3b). 
When we add these together, the phases will cancel and there will be no CP violation. 
To get something non-zero, we need to add to twelfth-order diagrams which yield 
expressions of  the type (4.3) at least one U(1) boson line with at least one end on a 
right-handed fermion line so as to differentiate between ano- and catho-quarks. 
Therefore, the lowest order in which we may possibly find a logarithmically diver- 
gent contribution to 0 renormalization is the 14th. 

We should emphasize at this point that we cannot demonstrate that there is 

Fig. 9. Generic topology of a class of divergent CP violating 14th-order diagrams in the 
Kobayashi-Maskawa model [21,22]. 
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act with each other. We are therefore led to contemplate diagrams where the fermion 
line is festooned with non-interacting bosons. The diagram will have a factor from 
the q~-boson vertices of  the generic form 

Tr(Ut  rn nt Um n2 U? m n3 Umn4 ) , (4.1) 

and a logarithmic divergence which will be identical for diagrams of identical topo- 
logy, but will in general differ for different topologies. 

It is easy to satisfy oneself using the Feynman rules of  fig. 8 that the powers 
nl ... n4 in the generic expression (4.1) must all be even, and there will be a phase 
and hence CP violation only if they are all >~2. The expression (4.1) will be sym- 
metric, and hence no phase CP violation will arise, from any of  the following low- 
order combinations of  the hi: 

/71 =n2  =n3  =n4  = 2 ,  

n 1 = 4, n 2 = n 3 = n 4 = 2, and permutations thereof ; 

Ftl = /'/3 = 4 ,  /7 2 = / 7  4 = 2 ,  

n 2 = n 4 = 4, n 1 =/73 = 2 . (4.2) 

The first combinations of  the type (4.1) which might give a phase and hence CP vio- 
lation are therefore 

4 4 t 2 2 Tr(UCma Umc U m a  Umc) , (4.3a) 

Tr(Utma 2 UrnacUtm4aUm2c). (4.3b) 

We see from (4.3) that the lowest order in which a phase is potentially available is 
12th order. To get a divergence in this order all the quark mass factors in (4.3)would 
have to come from Higgs couplings, and there would be no vector boson couplings. 
But for every diagram on a catho-quark [29] line giving an expression of  type (4.3a) 
there will be a diagram on an ano-quark [29] fine giving an expression of  type (4.3b). 
When we add these together, the phases will cancel and there will be no CP violation. 
To get something non-zero, we need to add to twelfth-order diagrams which yield 
expressions of  the type (4.3) at least one U(1) boson line with at least one end on a 
right-handed fermion line so as to differentiate between ano- and catho-quarks. 
Therefore, the lowest order in which we may possibly find a logarithmically diver- 
gent contribution to 0 renormalization is the 14th. 

We should emphasize at this point that we cannot demonstrate that there is 

Fig. 9. Generic topology of a class of divergent CP violating 14th-order diagrams in the 
Kobayashi-Maskawa model [21,22]. 
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•Spontaneous CP violation
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= 0 by imposing CP. Need to break spont. for CKM (+BAU)
• High degree of fine tuning, or elaborated constructions to keep
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Three types of solutions

•Spontaneous CP violation

• Peccei-Quinn  solution 

at all orders.    No unambiguous exp. signatures.

• From lattice: [Aoki (2013)]
[Manhoar & Sachrajda, PDG(2014)]

= 0 by imposing CP. Need to break spont. for CKM (+BAU)
• High degree of fine tuning, or elaborated constructions to keep

[Barr (1984), Nelson (1984)]

[Peccei, Quinn (1977), 
Weinberg (1978), Wilczek (1978)]

•Assume a global U(1)PQ: (i) spontaneously broken; (ii) QCD anomalous
•Implies a PGB of U(1)PQ: the Axion. Shift symmetry:

6

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ
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QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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F · F̃ , (69)
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models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
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Relaxation of Θeff(x) —> 0

[Vafa, Witten (1984)]

• Minimum ground state energy in Euclidean V4 

where                                , and using Schwartz inequality 

•  So E(0) < E(θeff)   and in the ground state the θ term           
is  is dynamically relaxed to 0.



• PQWW axion: 
  Axion identified with the phase of the Higgs in a 2HDM            
a (fa ~ VEW   was  quickly ruled out long ago) 

The need to require fa >> VEW: “invisible axion”  

• DSFZ Axion: SM quarks and Higgs charged under PQ.  
   Requires 2HDM + 1 scalar singlet. SM leptons can also be charged. 

[Dine, Fischler, Srednicki (1981), Zhitnitsky (1980)]

• KSVZ axion (or QCD axion, or hadronic axion):   
  All SM fields are neutral under PQ. QCD anomaly is induced by 
  new quarks, vectorlike under the SM, chiral under PQ. 

 E. Nardi (INFN-LNF) - Redefining the axion window                06/25  

Axion models

[Kim (1979), Shifman, Vainshtein, Sakharov (1980)]

[Peccei, Quinn (1977), 
Weinberg (1978), Wilczek (1978)]



•Axion mass:            

• All axion couplings:            

   The lighter is the axion, the weaker are its interactions  
Axion Landscape: 
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Model independent features

Redefining the Axion Window

Luca Di Luzio,1, ⇤ Federico Mescia,2, † and Enrico Nardi3, ‡
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A major goal of axion searches is to reach inside the parameter space region of realistic axion
models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it
would be desirable to specify them in terms of precise phenomenological requirements. We consider
hadronic axion models and classify the representations RQ of the new heavy quarks Q. By requiring
that i) the Q are su�ciently short lived to avoid issues with long lived strongly interacting relics,
ii) no Landau poles are induced below the Planck scale, fifteen cases are selected, which define a
phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-
photon coupling about twice (four times) stronger than commonly assumed. Allowing for more than
one RQ, stronger couplings, as well as complete axion-photon decoupling, become possible.

PACS numbers: 14.80.Va, 14.65.Jk
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109 GeV
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(2)

I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a
challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general
it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (3)

where G, F are the color and electromagnetic field
strength tensors, G̃, F̃ their duals, and N and E are
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FIG. 15: A cartoon for the Fa bounds.

and the QA mass mq. We can parametrize the QA (φ)
potential as

V [φ] = λ4U(ξ), ξ =
φ

fq
. (98)

For ω = p/ρ < −1 + δ, we require fq >
√

(2 − δ)/6δ MP |U ′| where U ′ = dU/dξ [241, Kim,
Nilles (2003)]. Generically, one needs a Planckian scale
quintessential axion decay constant fq. So, the QA mass
is extremely small, ! 10−32 eV. As a result, there are two
problems to be resolved to achieve the QA idea: a large
decay constant and an extremely shallow QA potential.

It has long been believed that the MI axion has rather
a robust model independent prediction of its decay con-
stant [89, 343, Choi, Kim (1985), Svrcek, Witten (2006)].
Recently, however, it was shown that the MI axion may
not be model independent since the decay constant may
depend on the compactification scheme in warped inter-
nal space, ds2 = h2

wηµνdxµdxν + gmn(y)dymdyn [119,
Dasgupta, Firouzjahi, Gwyn (2008)],

Fa =

√

2

β

m2
s

MP
(99)

where β depends on the warping in the compact space
y ∈ K,

β =

∫

d6y
√

g(6)e
−φh−2

w
∫

d6y
√

g(6)h2
w

. (100)

Thus, the MI axion with a small β can be a QA if the
QCD axion decay constant can be in the intermediate
scale. This possibility may be realizable in some com-
posite axion models as recently suggested in [242, Kim,
Nilles (2009)].

V. AXION DETECTION EXPERIMENTS

There are currently a variety of experiments searching
for axions, whether they are left over from the big bang
or produced in stars or the laboratory. Though these
experiments search for axions at a variety of mass and
coupling scales they all rely on the Primakoff process for
which the following coupling, caγγ is given in Eq. (75),

L = caγγ
a

Fa
{FemF̃em}, caγγ ≃ c̄aγγ − 1.98 (101)

where c̄aγγ = TrQ2
em|E≫MZ .

A. Solar axion search

1. Axion Helioscopes

Axions produced in the nuclear core of the sun will
free-stream out and can possibly be detected on Earth
via an axion helioscope, first described in 1983 [333, 334,
Sikivie (1983, 1985)] and developed into a practical labo-
ratory detector in 1988 [355, van Bibber, McIntyre, Mor-
ris, Raffelt (1989)]. The technique relies on solar axions
converting into low energy X-rays as they pass through
a strong magnetic field. The flux of axions produced in
the sun is expected to follow a thermal distribution with
a mean energy of ⟨E⟩ = 4.2 keV. The integrated flux at
Earth is expected to be Φa = g2

103.67 × 1011 cm−2s−1

with g10 = (αem/2πFa)caγγ1010 GeV [380, Ziotas et al.
(2005)]. The probability of a solar axion converting into a
photon as it passes through a magnet with field strength
B and length L is given as:

P =

(

αemcaγγBL

4πFa

)2

2L2 1 − cos(qL)

(qL)2
. (102)

Here caγγ is defined as the coupling of the axion to two
photons as given in Eq. (101), while q is the momentum
difference between the axion and the photon, defined as

[Kim, Carosi (2009)]
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Axion CDM from misalignment



• As long as   ΛQCD <T < fa :
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Axion CDM from misalignment

  U(1)PQ  broken only spontaneously,  
   ma = 0,       <a0> = θ0 fa  ~ fa

Georg Raffelt, MPI Physics, Munich Off-the-Beaten-Track Dark Matter, ICTP, Trieste 13–17 April 2015

Creation of Cosmological Axions

 

 

 

 

 

 

 

 

 

Axions are born as nonrelativistic, classical field oscillations 
Very small mass, yet cold dark matter
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ä+m2

a(T )fa sin

✓
a

fa

◆
⇡ 0 (11)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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ä+ 3Hȧ+m2
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
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Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

  
 U(1)PQ  explicit breaking (instanton effects)   
 ma(T) turns on. When ma(T) > H ~ 10-9 eV,        
 <a0> —> 0 and starts oscillating undamped 
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• Αs soon as Τ ~ ΛQCD :

• Energy stored in oscillations behaves as CDM

  U(1)PQ  broken only spontaneously,  
   ma = 0,       <a0> = θ0 fa  ~ fa
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
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the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

  
 U(1)PQ  explicit breaking (instanton effects)   
 ma(T) turns on. When ma(T) > H ~ 10-9 eV,        
 <a0> —> 0 and starts oscillating undamped 

Georg Raffelt, MPI Physics, Munich Off-the-Beaten-Track Dark Matter, ICTP, Trieste 13–17 April 2015

Creation of Cosmological Axions

 

 

 

 

 

 

 

 

 

Axions are born as nonrelativistic, classical field oscillations 
Very small mass, yet cold dark matter

[Preskill, Wise, Wilczek (1983), Abott, Sikivie (1983), Dine, Fischler (1983)]



Energy density & initial conditions
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for                 upper limit fa ≾ 1011÷12 GeV               

Energy density & initial conditions
•From recent lattice QCD calculations, [Bonati et al. 1512.06746, Petreczky et al. 1606.03145, 

Borsanyi et al. 1606.07494]
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (18)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (20)

E =
X

Q

(XL � XR) Q2

Q , (21)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
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for                 upper limit fa ≾ 1011÷12 GeV               

• Value of  θ0 depends on the scale of inflation 

     versus  the PQ breaking scale fa 

  — U(1)PQ broken after inflation: average over  
       several Universe patches : <θ0> = π/√3 

 — U(1)PQ   broken before inflation: in the  
       whole observable Universe the same random value of  θ0  

 — “Antropic Axion”:    fa >> 1012 GeV is allowed only  if θ0 << 1

Energy density & initial conditions
•From recent lattice QCD calculations, [Bonati et al. 1512.06746, Petreczky et al. 1606.03145, 

Borsanyi et al. 1606.07494]

density but Na = ρaR3/ma, which can be interpreted as the number of axions [5–7].

Through the conservation of the comoving entropy S, it follows that n⋆
a/s

⋆ becomes an

adiabatic invariant. Hence, it is enough to integrate the equation of motion (4.2) in the

small window around the time when T ≈ Tosc. We integrated numerically Eq. (4.2) in the

interval between the time when ma = H/10 to that corresponding to ma = 2400H and

extract the ratio n⋆
a/s

⋆ when ma ∼ 300H, namely a factor a hundred since the oscillation

regime begins. The value for Tosc varies from Tc to several GeV depending on the axion

decay parameter fa and the temperature dependence of the axion potential. More details

about this standard computation can be found for example in [59, 70]. In order to estimate

the uncertainty in the results given below we varied the fitting parameters of the topological

susceptibility D2, D0 and those relative to the QCD equation of state [37] within the quoted

statistical and systematic errors.

Given that b2(T ) converges relatively fast to the value predicted by a single cosine

potential, we can assume V (a) = −χ(T ) cos(a/fa) for T ! Tc. Using the most conservative

results for the fit of χ(T ), i.e. χ(T )/χ(0) = (1.8 ± 1.5)(Tc/T )2.90±0.65, in Fig. 10 we plot

the prediction for the parameter fa as a function of the initial value of the axion field

θ0 = a0/fa assuming that the misalignment axion contribution make up for the whole

observed dark matter abundance, ΩDM = 0.259(4) [71]. We also plot the case where the

axion misalignment contribution accounts only for part (10% for definiteness) of the dark

matter abundance.

Figure 10. Values of the axion decay constant fa as a function of the initial field value θ0 = a0/fa
such that the axion misalignment contribution matches the full or a tenth of the observed dark
matter abundance (red band or dotted green line respectively). When the PQ symmetry is broken
only after inflation the axion abundance is reproduced by choosing θ0 ≈ 2.2, i.e. the vertical blue
dashed line.

In some cases the axion field acquires all possible values within the visible horizon,

therefore the initial condition to the Eq. (4.2) needs to be integrated over. This happens

if the PQ symmetry is broken only after inflation or if the PQ symmetric phase is tem-

porarily restored after inflation (e.g. if the Hubble scale during inflation or the maximum

– 19 –
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symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
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- Star evolution, RG lifetime 

- White dwarf cooling 

Astrophysical lower limit on fa

• Astrophysical bounds

- Supernova SN1987A

[For a collection see e.g. Raffelt, hep-ph/0611350]

6.2 Astrophysical bounds

be detected at the end of the telescope. CAST has already been able to constrain the
axion photon coupling to lie below ga�� . 8.8 ⇥ 10�11 GeV�1 for ma < 0.02 eV and
ga�� . 2.2 ⇥ 10�10 GeV �1 for 0.02 < ma < 0.4 eV [327].

Furthermore, it is possible to reach an increased sensitivity with stronger magnets,
the basis for the International Axion Observatory (IAXO) [310]. After few years of data
taking, IAXO may be able to reach ga�� ⇠ 5 ⇥ 10�12 GeV�1 for ma . 0.02 eV and
ga�� ⇠ 1 ⇥ 10�11 GeV�1 for 0.02 . ma . 0.2 eV.

Supernova SN1987A

One of the strongest bounds on the axion mass comes from the observations of neutrinos
originating from the supernova SN1987A [328]. The relevant process consists of a core
collapse of a massive star which subsequently leads to a proto neutron star. Axion can
therefore be produced through nucleon nucleon axion bremsstrahlung N+N ! N+N+a,
involving the axion nucleon coupling.

The cooling time of the supernova can be affected by such a process and the duration
of the burst can therefore be reduced. As a consequence, the associated neutrino flux
may be reduced. If the axion nucleon coupling gaNN is very small, the axion emission
does not change the cooling time. As gaNN increases, the emission of bremsstrahlung
axions increase and therefore the burst duration shortens. A minimum in the cooling
time is reached when the axion mean free path corresponds to the geometric size of the
supernova core. For even larger couplings, axions are trapped in the medium and their
emission decreases reaching a point where the cooling time is unaffected by their presence.

The Kamiokande-II and the Irvine-Michigan-Brookhaven experiments measured the
flux of electron antineutrinos coming from the SN1987A, allowing comparison of the data
with theoretical expectations. Such measurements allowed to exclude axions for 3 ⇥
10�10 . gaNN/ GeV�1 . 3 ⇥ 10�7 [313], implying that QCD axion masses heavier than
O(10) meV are excluded. This bound corresponds to fa & 2 ⇥ 108 GeV.

White dwarf cooling

After helium burning stars reach the latest stages of their helium consumption, they evolve
to the asymptotic giant branch (AGB) in the Hertzsprung-Russell diagram. An AGB star
may then evolve into a white dwarf star by cooling down because of neutrino emission and
surface photon emission. The existence of axions would open up an additional channel
for the cooling of AGN into white dwarfs via the process

e + Ze ! e + Ze + a, (6.4)

109

6. Axion searches

where Z is the atomic number. It is then possible to derive constraints on the axion mass
and the axion-electron coupling comparing the theoretical luminosity function, including
the above process, and the observed cooling rate derived from the decrease of the rotational
period. The constraint on the axion-electron coupling obtained is [329, 330]

gaee . 1.3 ⇥ 10�13. (6.5)

Globular cluster stars

Gravitationally bound systems of stars that formed at the same time are called globular
clusters. Globular clusters are particularly useful for testing models of stellar evolution
because their stars formed at the same time. If axions exist, they would change the
evolution of helium burning stars accelerating the helium consumption via the axion
production channel. This effect would reduce the lifetime of the horizontal branch stars
by a factor proportional to the axion-photon coupling
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A reasonably conservative estimate from the analysis of a statistically significant set of
helium burning stars implies [331]

ga�� . 6.6 ⇥ 10�11 GeV�1, (6.7)

a limit comparable to the one of CAST, but applying for higher masses. This limit
excludes QCD axions heavier than O(10) eV.

Black hole superradiance

Very light axions have a Compton wavelength comparable to the size of black holes and
thus form an approximately hydrogenic spectrum of bound states with different energy
levels. The occupation number of the bound states grows exponentially, fed by the energy
and the angular momentum of the black hole. While the occupation number of the
bound states grows forming a condensate around the black hole, axions can superradiate
extracting angular momentum and rotational energy from the black hole. Furthermore,
axions can emit gravitational waves resulting in a regular extraction of angular momentum
from the black hole. As a consequence, the black hole spins down. Current black hole
spin measurements imply an upper bound on the QCD axion decay constant of 2 ⇥ 1017

GeV [332, 333].
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excludes QCD axions heavier than O(10) eV.

Black hole superradiance

Very light axions have a Compton wavelength comparable to the size of black holes and
thus form an approximately hydrogenic spectrum of bound states with different energy
levels. The occupation number of the bound states grows exponentially, fed by the energy
and the angular momentum of the black hole. While the occupation number of the
bound states grows forming a condensate around the black hole, axions can superradiate
extracting angular momentum and rotational energy from the black hole. Furthermore,
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from the black hole. As a consequence, the black hole spins down. Current black hole
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6.2 Astrophysical bounds

be detected at the end of the telescope. CAST has already been able to constrain the
axion photon coupling to lie below ga�� . 8.8 ⇥ 10�11 GeV�1 for ma < 0.02 eV and
ga�� . 2.2 ⇥ 10�10 GeV �1 for 0.02 < ma < 0.4 eV [327].

Furthermore, it is possible to reach an increased sensitivity with stronger magnets,
the basis for the International Axion Observatory (IAXO) [310]. After few years of data
taking, IAXO may be able to reach ga�� ⇠ 5 ⇥ 10�12 GeV�1 for ma . 0.02 eV and
ga�� ⇠ 1 ⇥ 10�11 GeV�1 for 0.02 . ma . 0.2 eV.

Supernova SN1987A

One of the strongest bounds on the axion mass comes from the observations of neutrinos
originating from the supernova SN1987A [328]. The relevant process consists of a core
collapse of a massive star which subsequently leads to a proto neutron star. Axion can
therefore be produced through nucleon nucleon axion bremsstrahlung N+N ! N+N+a,
involving the axion nucleon coupling.

The cooling time of the supernova can be affected by such a process and the duration
of the burst can therefore be reduced. As a consequence, the associated neutrino flux
may be reduced. If the axion nucleon coupling gaNN is very small, the axion emission
does not change the cooling time. As gaNN increases, the emission of bremsstrahlung
axions increase and therefore the burst duration shortens. A minimum in the cooling
time is reached when the axion mean free path corresponds to the geometric size of the
supernova core. For even larger couplings, axions are trapped in the medium and their
emission decreases reaching a point where the cooling time is unaffected by their presence.

The Kamiokande-II and the Irvine-Michigan-Brookhaven experiments measured the
flux of electron antineutrinos coming from the SN1987A, allowing comparison of the data
with theoretical expectations. Such measurements allowed to exclude axions for 3 ⇥
10�10 . gaNN/ GeV�1 . 3 ⇥ 10�7 [313], implying that QCD axion masses heavier than
O(10) meV are excluded. This bound corresponds to fa & 2 ⇥ 108 GeV.

White dwarf cooling

After helium burning stars reach the latest stages of their helium consumption, they evolve
to the asymptotic giant branch (AGB) in the Hertzsprung-Russell diagram. An AGB star
may then evolve into a white dwarf star by cooling down because of neutrino emission and
surface photon emission. The existence of axions would open up an additional channel
for the cooling of AGN into white dwarfs via the process

e + Ze ! e + Ze + a, (6.4)
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
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New search strategies 
• Astrophysical bounds

- Star evolution, RG lifetime 

- Cosmic Axion Spin Precession Experiment (CASPEr). 

• Some new search possibilities  which do not depend on  gaγγ 

- White dwarf cooling 

- Supernova SN1987A

[For a collection see e.g. Raffelt, hep-ph/0611350]

6.2 Astrophysical bounds

be detected at the end of the telescope. CAST has already been able to constrain the
axion photon coupling to lie below ga�� . 8.8 ⇥ 10�11 GeV�1 for ma < 0.02 eV and
ga�� . 2.2 ⇥ 10�10 GeV �1 for 0.02 < ma < 0.4 eV [327].

Furthermore, it is possible to reach an increased sensitivity with stronger magnets,
the basis for the International Axion Observatory (IAXO) [310]. After few years of data
taking, IAXO may be able to reach ga�� ⇠ 5 ⇥ 10�12 GeV�1 for ma . 0.02 eV and
ga�� ⇠ 1 ⇥ 10�11 GeV�1 for 0.02 . ma . 0.2 eV.

Supernova SN1987A

One of the strongest bounds on the axion mass comes from the observations of neutrinos
originating from the supernova SN1987A [328]. The relevant process consists of a core
collapse of a massive star which subsequently leads to a proto neutron star. Axion can
therefore be produced through nucleon nucleon axion bremsstrahlung N+N ! N+N+a,
involving the axion nucleon coupling.

The cooling time of the supernova can be affected by such a process and the duration
of the burst can therefore be reduced. As a consequence, the associated neutrino flux
may be reduced. If the axion nucleon coupling gaNN is very small, the axion emission
does not change the cooling time. As gaNN increases, the emission of bremsstrahlung
axions increase and therefore the burst duration shortens. A minimum in the cooling
time is reached when the axion mean free path corresponds to the geometric size of the
supernova core. For even larger couplings, axions are trapped in the medium and their
emission decreases reaching a point where the cooling time is unaffected by their presence.

The Kamiokande-II and the Irvine-Michigan-Brookhaven experiments measured the
flux of electron antineutrinos coming from the SN1987A, allowing comparison of the data
with theoretical expectations. Such measurements allowed to exclude axions for 3 ⇥
10�10 . gaNN/ GeV�1 . 3 ⇥ 10�7 [313], implying that QCD axion masses heavier than
O(10) meV are excluded. This bound corresponds to fa & 2 ⇥ 108 GeV.

White dwarf cooling

After helium burning stars reach the latest stages of their helium consumption, they evolve
to the asymptotic giant branch (AGB) in the Hertzsprung-Russell diagram. An AGB star
may then evolve into a white dwarf star by cooling down because of neutrino emission and
surface photon emission. The existence of axions would open up an additional channel
for the cooling of AGN into white dwarfs via the process

e + Ze ! e + Ze + a, (6.4)
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6. Axion searches

where Z is the atomic number. It is then possible to derive constraints on the axion mass
and the axion-electron coupling comparing the theoretical luminosity function, including
the above process, and the observed cooling rate derived from the decrease of the rotational
period. The constraint on the axion-electron coupling obtained is [329, 330]

gaee . 1.3 ⇥ 10�13. (6.5)

Globular cluster stars

Gravitationally bound systems of stars that formed at the same time are called globular
clusters. Globular clusters are particularly useful for testing models of stellar evolution
because their stars formed at the same time. If axions exist, they would change the
evolution of helium burning stars accelerating the helium consumption via the axion
production channel. This effect would reduce the lifetime of the horizontal branch stars
by a factor proportional to the axion-photon coupling
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A reasonably conservative estimate from the analysis of a statistically significant set of
helium burning stars implies [331]

ga�� . 6.6 ⇥ 10�11 GeV�1, (6.7)

a limit comparable to the one of CAST, but applying for higher masses. This limit
excludes QCD axions heavier than O(10) eV.

Black hole superradiance

Very light axions have a Compton wavelength comparable to the size of black holes and
thus form an approximately hydrogenic spectrum of bound states with different energy
levels. The occupation number of the bound states grows exponentially, fed by the energy
and the angular momentum of the black hole. While the occupation number of the
bound states grows forming a condensate around the black hole, axions can superradiate
extracting angular momentum and rotational energy from the black hole. Furthermore,
axions can emit gravitational waves resulting in a regular extraction of angular momentum
from the black hole. As a consequence, the black hole spins down. Current black hole
spin measurements imply an upper bound on the QCD axion decay constant of 2 ⇥ 1017

GeV [332, 333].
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where Z is the atomic number. It is then possible to derive constraints on the axion mass
and the axion-electron coupling comparing the theoretical luminosity function, including
the above process, and the observed cooling rate derived from the decrease of the rotational
period. The constraint on the axion-electron coupling obtained is [329, 330]

gaee . 1.3 ⇥ 10�13. (6.5)

Globular cluster stars

Gravitationally bound systems of stars that formed at the same time are called globular
clusters. Globular clusters are particularly useful for testing models of stellar evolution
because their stars formed at the same time. If axions exist, they would change the
evolution of helium burning stars accelerating the helium consumption via the axion
production channel. This effect would reduce the lifetime of the horizontal branch stars
by a factor proportional to the axion-photon coupling
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levels. The occupation number of the bound states grows exponentially, fed by the energy
and the angular momentum of the black hole. While the occupation number of the
bound states grows forming a condensate around the black hole, axions can superradiate
extracting angular momentum and rotational energy from the black hole. Furthermore,
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from the black hole. As a consequence, the black hole spins down. Current black hole
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6.2 Astrophysical bounds

be detected at the end of the telescope. CAST has already been able to constrain the
axion photon coupling to lie below ga�� . 8.8 ⇥ 10�11 GeV�1 for ma < 0.02 eV and
ga�� . 2.2 ⇥ 10�10 GeV �1 for 0.02 < ma < 0.4 eV [327].

Furthermore, it is possible to reach an increased sensitivity with stronger magnets,
the basis for the International Axion Observatory (IAXO) [310]. After few years of data
taking, IAXO may be able to reach ga�� ⇠ 5 ⇥ 10�12 GeV�1 for ma . 0.02 eV and
ga�� ⇠ 1 ⇥ 10�11 GeV�1 for 0.02 . ma . 0.2 eV.

Supernova SN1987A

One of the strongest bounds on the axion mass comes from the observations of neutrinos
originating from the supernova SN1987A [328]. The relevant process consists of a core
collapse of a massive star which subsequently leads to a proto neutron star. Axion can
therefore be produced through nucleon nucleon axion bremsstrahlung N+N ! N+N+a,
involving the axion nucleon coupling.

The cooling time of the supernova can be affected by such a process and the duration
of the burst can therefore be reduced. As a consequence, the associated neutrino flux
may be reduced. If the axion nucleon coupling gaNN is very small, the axion emission
does not change the cooling time. As gaNN increases, the emission of bremsstrahlung
axions increase and therefore the burst duration shortens. A minimum in the cooling
time is reached when the axion mean free path corresponds to the geometric size of the
supernova core. For even larger couplings, axions are trapped in the medium and their
emission decreases reaching a point where the cooling time is unaffected by their presence.

The Kamiokande-II and the Irvine-Michigan-Brookhaven experiments measured the
flux of electron antineutrinos coming from the SN1987A, allowing comparison of the data
with theoretical expectations. Such measurements allowed to exclude axions for 3 ⇥
10�10 . gaNN/ GeV�1 . 3 ⇥ 10�7 [313], implying that QCD axion masses heavier than
O(10) meV are excluded. This bound corresponds to fa & 2 ⇥ 108 GeV.

White dwarf cooling

After helium burning stars reach the latest stages of their helium consumption, they evolve
to the asymptotic giant branch (AGB) in the Hertzsprung-Russell diagram. An AGB star
may then evolve into a white dwarf star by cooling down because of neutrino emission and
surface photon emission. The existence of axions would open up an additional channel
for the cooling of AGN into white dwarfs via the process

e + Ze ! e + Ze + a, (6.4)
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�
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gaNN . 3⇥ 10�7 GeV�1 (45)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,

[Budker et al., 1306.6089]

- Black hole super-radiance (mainly bounds for ALPs)  [Arvanitaki, Dubovsky 1004.3558]

Background axion field might induce an oscillating neutron EDM, which can be detected 
via NMR techniques.

very light axions with a Compton wavelength comparable with that of a black hole can 
form a gravitational bound state and irradiate energy via gravitational waves  
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The “usual” axion window

9

E
/N

=
44
/3

E
/N

=
5/
3

NQ = 1

H
D
MCAST

Helioscopes

IAXO

Haloscopes

HB

NQ > 1

FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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RQ OQq ⇤
RQ
LP [GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ allowing for the d  4 and d = 5 Q-decay
operators listed in the second column, and yielding LP
at scales above 1018GeV. The fourth column gives the
anomaly contribution to the axion-photon coupling, and
the last one gives the DW number.

Table II. The corresponding couplings are given
in Fig. 2 by the set of oblique dotted lines, which
are plotted only at small ma values to give an idea
of the “density of preferred hadronic axion mod-
els”. All in all, we find that the strongest cou-
pling is obtained for Rs

Q = (3, 3,�4/3) that gives
Es/Ns � 1.92 ⇠ 12.75, almost twice the usually
adopted value of 7.0 [34], while the weakest cou-
pling is obtained for Rw

Q = (3, 2, 1/6) for which
Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single
RQ is present, according to our two selection criteria
all preferred hadronic axion models fall within the
band delimited by 5/3  E/N  44/3, as depicted
in Fig. 2. In the figure we have drawn with dashed
lines the boundary of the usual axion window and,
to compare theoretical predictions with the exper-
imental situation, we have also plotted the current
exclusion bounds and projected sensitivities.

VI. More RQ and axion-photon decoupling.
Let us now study to which extent the previous re-
sults can be changed by the presence of more RQ’s.
It would be quite interesting if, for example, ga��
could get enhanced. However, we can easily see that,
as long as the sign of �X = XL � XR is the same
for all RQ’s, this cannot occur. Let us write the
combined anomaly factor for RQ +Rs

Q:

Ec

Nc
⌘ E + Es

N +Ns
=

Es

Ns

✓
1 + E/Es

1 +N/Ns

◆
. (15)

Since by construction the anomaly coe�cients of any
RQ in our preferred set satisfy E/N  Es/Ns, the
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FIG. 2. The ga��/ma window for preferred axion mod-
els. The lines E/N = 44/3 and 5/3 encompass models
with a single RQ in Table II. The region below the line
E/N = 122/3 allows for two RQ’s. The yellow stripe
delimited by dashed lines reproduces the usual window
|E/N � 1.92| 2 [0.07, 7] [34]. Current (projected) exclu-
sion bounds are delimited by solid (dashed) lines. The
dark (light) orange band encompasses cosmologically in-
teresting models yielding ⌦a/⌦DM = 1 (> 0.01).

factor in parenthesis is never larger than one im-
plying Ec/Nc < Es/Ns. This is not so, however,
if we allow for opposite signs in the PQ charge dif-
ferences: �X = ��X s. In this case E/Es and
N/Ns become negative and ga�� can get enhanced.
The largest enhancement attainable with two RQ’s
is obtained with Rs

Q�Rw
Q. This still respects the LP

selection criterium and yields Ec/Nc = 122/3, cor-
responding in Fig. 2 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� be-
low the lower limit in Fig. 2, and even yield complete
axion-photon decoupling (within theoretical errors),
a possibility that requires an ad hoc choice of RQ’s,
but no numerical fine tuning. With two RQ’s there
are three such cases: (3, 3,�1/3) � (6, 1,�1/3);
(6, 1, 2/3)� (8, 1,�1) and (3, 2,�5/6)� (8, 2,�1/2)
giving respectively Ec/Nc = (23/12, 64/33, 41/21).
In all these cases the axion could be only detected
via its coupling to nucleons, providing additional
motivations for axion searches which do not rely on
the axion coupling to photons [52, 53].
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put

[Kim (1979), Shifman, Vainshtein, 
Sakharov (1980)]

• Field content KSVZ
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- Original model assumes Q ~ (3,1,0)       [only             is in fact required]. 
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put

• PQ charges carried by SM-vectorlike quarks Q = QL + QR 

[Kim (1979), Shifman, Vainshtein, 
Sakharov (1980)]
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (40)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (41)

E =
X

Q

(XL � XR) Q2

Q , (42)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (43)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (44)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (45)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (46)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put

• PQ charges carried by SM-vectorlike quarks Q = QL + QR 

[Kim (1979), Shifman, Vainshtein, 
Sakharov (1980)]
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dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39)

4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc
� 1.92(4)

◆
(33)

R1

Q +R2

Q (34)

Ec

Nc
=

E
1

+ E
2

N
1

+ E
2

(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
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models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
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under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L
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possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
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symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4
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as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4
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must be of dimension d � 11 [11–13]. Clearly, if
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
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is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
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a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy
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RQ). The color index is defined by TrT a
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where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (
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quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.
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mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set
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In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =
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G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2
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|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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gauge invariant kinetic term in L
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possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
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One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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E =
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L
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symmetry corresponding
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

- U(1)Q is Q-baryon number.  Exact U(1)Q ⇒ Q stability.   [E.g. Q ~ (3,1,0)]
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where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

- U(1)Q is Q-baryon number.  Exact U(1)Q ⇒ Q stability.   [E.g. Q ~ (3,1,0)]
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models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X
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(XL � XR) T (CQ) , (42)

E =
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
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contains the new scalar couplings:
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
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2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

- U(1)Q is Q-baryon number.  Exact U(1)Q ⇒ Q stability.   [E.g. Q ~ (3,1,0)]
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experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2
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|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
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symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
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variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.

ZN(q) d  4 d = 5 (XL,XR)

1 QLdR QL�µqL (DµH)† (0,�1)

! QLdR�
† (�1,�2)

!N�2 – QLdR�
2, QRqLH

†� (2, 1)

!N�1 qLQRH, QLdR� – (1, 0)

TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (49).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (50)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4

�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy
particles decays with lifetimes ⇠ (106 � 1012) s is strongly constrained also by limits on CMB spectral
distortions [28–30], while Q’s decaying around the recombination era (⌧Q >⇠ 1013 s.) are tightly constrained
by measurement of CMB anisotropies. Decays after recombination would give rise to free-streaming photons

Can allow Q decays even if 
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
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(XL � XR) T (CQ) , (42)

E =
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
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Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
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charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
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2. VH�

contains the new scalar couplings:
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= �µ2
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

- U(1)Q is Q-baryon number.  Exact U(1)Q ⇒ Q stability.   [E.g. Q ~ (3,1,0)]
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a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
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grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
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models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
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TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (49).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (50)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4
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is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy
particles decays with lifetimes ⇠ (106 � 1012) s is strongly constrained also by limits on CMB spectral
distortions [28–30], while Q’s decaying around the recombination era (⌧Q >⇠ 1013 s.) are tightly constrained
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,

If N < 10 would spoil the PQ solution 
[Kamionkowski, March-Russell (1992), Holman et al. (1992), Barr, Seckel (1992)]
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.

ZN(q) d  4 d = 5 (XL,XR)

1 QLdR QL�µqL (DµH)† (0,�1)

! QLdR�
† (�1,�2)

!N�2 – QLdR�
2, QRqLH

†� (2, 1)

!N�1 qLQRH, QLdR� – (1, 0)

TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (51)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4

�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy
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stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.
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the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
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with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4
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is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy

1. U(1)PQ arises accidentally and is of the required high quality
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TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (51)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4

�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy

1. U(1)PQ arises accidentally and is of the required high quality

2. U(1)Q is either broken at the ren. level, or is of sufficient bad quality
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L
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symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1
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would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
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and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.
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The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.
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RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.

ZN(q) d  4 d = 5 (XL,XR)

1 QLdR QL�µqL (DµH)† (0,�1)

! QLdR�
† (�1,�2)
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2, QRqLH

†� (2, 1)

!N�1 qLQRH, QLdR� – (1, 0)

TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (51)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4

�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy
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One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
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as well as an e↵ective Lagrangian Ld>4
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must be of dimension d � 11 [11–13]. Clearly, if
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Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.
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the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:
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is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
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1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z
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broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy

1. U(1)PQ arises accidentally and is of the required high quality

2. U(1)Q is either broken at the ren. level, or is of sufficient bad quality

E. Nardi (INFN-LNF) - Redefining the axion window                 14/25                                             

• An example with R(Q) ~ R(dR), such that gauge symm. allows 

6

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.

ZN(q) d  4 d = 5 (XL,XR)

1 QLdR QL�µqL (DµH)† (0,�1)

! QLdR�
† (�1,�2)

!N�2 – QLdR�
2, QRqLH

†� (2, 1)

!N�1 qLQRH, QLdR� – (1, 0)

TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (51)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4

�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy

4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc
� 1.92(4)

◆
(33)

R1

Q +R2

Q (34)

Ec

Nc
=

E
1

+ E
2

N
1

+ E
2

(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � v
EW

(39)

U(1)
PQ

⇥ U(1)
Q

(40)

LQq 6= 0 (41)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
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dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
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grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1
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PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
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well known that to preserve ✓ < 10�10, operators in V d>4
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must be of dimension d � 11 [11–13]. Clearly, if
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Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.

ZN(q) d  4 d = 5 (XL,XR)

1 QLdR QL�µqL (DµH)† (0,�1)

! QLdR�
† (�1,�2)

!N�2 – QLdR�
2, QRqLH

†� (2, 1)

!N�1 qLQRH, QLdR� – (1, 0)

TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:

QL ! QL , QR ! !N�1QR , � ! !� , (51)

with ! ⌘ ei2⇡/N. This ensures that the minimum dimension of the PQ breaking operators in V d>4

�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
lists di↵erent possibilities for d  4 and d = 5. In the last column we give the PQ charges that one would
assign to the QL,R to keep U(1)PQ unbroken.

III. Cosmology. We assume a post-inflationary scenario in which U(1)PQ is broken after inflation. Requir-
ing that the axion energy density from vacuum realignment does not exceed ⌦DM implies fa ⌘ Va/NDW <⇠ 5·
1011 GeV [22, 23], where NDW = 2N is the vacuum degeneracy corresponding to a Z

2N ⇢ U(1)PQ left un-
broken by non-perturbative QCD e↵ects. We further assume mQ < T

reheating

so that a thermal distribution
of Q provides the initial conditions for their cosmological history.

Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy
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Depending on their specific properties they will be subject to di↵erent types of constraints. For some
RQ’s the heavy quark can only hadronize into fractionally charged hadrons, which implies that decays into
SM particles are forbidden [24]. These Q-hadrons must then exist today as stable relics. Searches for
fractionally charged particles limit their abundance with respect to ordinary nucleons to nQ/nb <⇠ 10�20

[25]. This is orders of magnitude below any reasonable estimate of their relic abundance and of their
concentrations in bulk matter. This restricts the possible RQ’s to the much smaller subset which allows for
integrally charged (or neutral) color singlet Q-hadrons. In this case decays into SM particles are allowed,
but cosmological observations severely constrains the heavy hadrons lifetime ⌧Q. For ⌧Q ⇠ (10�2 � 1012)
s. Q decays would a↵ect Big Bang Nucleosynthesis (BBN) [26, 27]. Early energy release from heavy
particles decays with lifetimes ⇠ (106 � 1012) s is strongly constrained also by limits on CMB spectral
distortions [28–30], while Q’s decaying around the recombination era (⌧Q >⇠ 1013 s.) are tightly constrained
by measurement of CMB anisotropies. Decays after recombination would give rise to free-streaming photons

6

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
stable. However, a scenario in which a global symmetry U(1)Q arises as an accident, because of specific
assignments for the charges of another global symmetry U(1)PQ, seems theoretically untenable. A simple
way out is to assume a suitable discrete (gauge) symmetry ZN ensuring that (i) U(1)PQ arises accidentally
and is of the required high quality; (ii) U(1)Q is either broken at the tree level, or it can be of su�cient bad
quality to allow for safely fast Q decays. Table II gives a neat example of how such a mechanism can work.
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1 QLdR QL�µqL (DµH)† (0,�1)

! QLdR�
† (�1,�2)

!N�2 – QLdR�
2, QRqLH

†� (2, 1)

!N�1 qLQRH, QLdR� – (1, 0)

TABLE II. ZN charges for the SM quarks q which allow for d  4 and d = 5 operators. In the last column we give
the PQ charges for which U(1)PQ remains unbroken. The ZN charges for QL,R and � are given in eq. (50).

We chose RQ = RdR = (3, 1,�1/3) so that GSM invariance allows for LQq 6= 0, and we assume the following
transformations under ZN:
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�

is N.
The dimension of U(1)Q breaking decay operators depends on the ZN charges of the SM quarks. Table II
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• Strongly interacting long-lived particles are an issue in cosmology
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

1013 (49)

1017 (50)

1026 (51)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (52)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally

5

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

1013 (49)

1017 (50)

1026 (51)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ
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Cosmological constraints on τQ
• Assume  mQ ≪  Treheating  (thermal distribution of Q’s as initial condition)       
nFree quark annihilation: excess ΩQ > ΩDM would allow to exclude τQ ≿ τUniv
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FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

RQ OQq ⇤
RQ
LP [GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE III. RQ allowing for the d  4 and d = 5 Q-decay operators listed in the second column, and yielding LP
at scales above 1018GeV. The fourth column gives the anomaly contribution to the axion-photon coupling, and the
last one gives the DW number.

Other features can render the choice of some RQ more appealing than others. For example if NDW = 1
problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table III, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
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• At T < ΛQCD  bound state formation can catalyse annihilations. 
  E.g. for color triplets:        Q*q + Qqq  ->   [Q*Q] + qqq 

• However QQ…, QQQ bound   
   bound states would hinder it.  

• A reliable estimate of ΩQ  
   remains an open issue !  
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First selection criterium
• We require that the Q are sufficiently short lived: τQ ≾ 10-2  s.
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First selection criterium
• We require that the Q are sufficiently short lived: τQ ≾ 10-2  s.

- Decays via d=4 operators are always 
       sufficiently fast.  

- Decays via higher order operators               
are fast enough only for d=5 and        
mQ  ≿ 800 TeV.
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quote the nonperturbative estimate of Kang, Luty and Nasri (KLN) [? ]

�
⌦Qh

2
�KLN

= 3 · 10�7
⇣ mQ

TeV

⌘3/2
, (14)

where Rhad denotes the typical hadronic size when the bound state is formed.

�
⌦Qh

2
�KLN

= 8.7 · 10�12

✓
Rhad

GeV�1

◆�2

⇥
✓

TC

180 MeV
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FIG. 1. Heavy quark’s relic density as a function of its mass. The full line corresponds to the nonperturbative
estimate in Eq. (15), with R

had

= 1 GeV and T
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= 180 MeV, while the dotted/dashed lines denote the perturbative
QCD expression in Eq. (13) with x
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& 1 TeV is the approximate bound from LHC (red region).

IV. Selection criteria.
The list of Q ⇠ (C, I,Y) irreps with nontrivial color quantum numbers, characterizing the most general

KSVZ axion model, is in principle infinite. However, in the relevant mQ < Treheating case, cosmological
constraints are particularly severe and can be exploited in order to reduce the list viable cases. By further
requiring that the KSVZ model remains weakly coupled up to the Planck scale, we arrive to a finite list of
phenomenologically preferred Q irreps, which are collected in Table II. In the following, we discuss the two
selection criteria which leads to it.

Cosmologically safe lifetimes. The lifetime of the metastable heavy quark is a crucial information for
cosmology. While the case of renormalizable interactions between Q and light SM quarks clearly leads to fast
enough decays of the heavy Q on a cosmological timescale, we provide here a quantitative estimate based
on naive dimensional analysis (NDA) of the Q lifetimes when the decay proceeds via Planck suppressed
e↵ective operators. We write the e↵ective Lagrangian responsible for the heavy quarks’ decay as

Ld>4
Qq =

1

M
(d�4)
Planck

Od>4
Qq + h.c. , (16)

where d is the canonical dimension of the operator Od>4
Qq . By assuming a constant matrix element and
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- Large Q multiplets can drive the gauge couplings towards a  
  non-perturbative regime, at uncomfortably low scales
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Figure 4: Same as in Fig. 3 for di↵erent extensions of the SM featuring a Majorana isospin-J fermion
of dimensionality n = 2J + 1. Notice that in ref. [6] only Majorana fermions with n  5 are allowed,
based on a one-loop analysis. However, at two loops only n � 4 survives, thus excluding the minimal
dark matter case.
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TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
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, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
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mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s
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◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

3
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Only 15 Q’s survive 
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FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.
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where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
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weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
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VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models
that allow for su�ciently short lifetimes ⌧Q <⇠ 10�2 s are phenomenologically preferred with respect to models
containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write Od>4

Qq = m4�d
P Pd(Q,'n)

where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d <⇠
⇡gfmQ

(d� 4)!(d� 5)!

 
m2

Q

16⇡2m2

P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)Q
>⇠
�
4 · 10�20, 7 · 10�3, 4 · 1015� ⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ >⇠ 800TeV decays occur with safe lifetimes ⌧
(5)

Q
<⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g

1

, g
2

, g
3

at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models
that allow for su�ciently short lifetimes ⌧Q <⇠ 10�2 s are phenomenologically preferred with respect to models
containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write Od>4

Qq = m4�d
P Pd(Q,'n)

where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d <⇠
⇡gfmQ

(d� 4)!(d� 5)!

 
m2

Q

16⇡2m2

P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)Q
>⇠
�
4 · 10�20, 7 · 10�3, 4 · 1015� ⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ >⇠ 800TeV decays occur with safe lifetimes ⌧
(5)

Q
<⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g

1

, g
2

, g
3

at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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R
Q

O
Qq

⇤2�loop

Landau

[GeV] E/N N
DW

(3, 1,�1/3) Q
L

d
R

9.3 · 1038(g
1

) 2/3 1

(3, 1, 2/3) Q
L

u
R

5.4 · 1034(g
1

) 8/3 1

(3, 2, 1/6) Q
R

q
L

6.5 · 1039(g
1

) 5/3 2

(3, 2,�5/6) Q
L

d
R

H† 4.3 · 1027(g
1

) 17/3 2

(3, 2, 7/6) Q
L

u
R

H 5.6 · 1022(g
1

) 29/3 2

(3, 3,�1/3) Q
R

q
L

H† 5.1 · 1030(g
2

) 14/3 3

(3, 3, 2/3) Q
R

q
L

H 6.6 · 1027(g
2

) 20/3 3

(3, 3,�4/3) Q
L

d
R

H†2 3.5 · 1018(g
1

) 44/3 3

(6, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 2.3 · 1037(g
1

) 4/15 5

(6, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 5.1 · 1030(g
1

) 16/15 5

(6, 2, 1/6) Q
R

�
µ⌫

q
L

Gµ⌫ 7.3 · 1038(g
1

) 2/3 10

(8, 1,�1) Q
L

�
µ⌫

e
R

Gµ⌫ 7.6 · 1022(g
1

) 8/3 6

(8, 2,�1/2) Q
R

�
µ⌫

`
L

Gµ⌫ 6.7 · 1027(g
1

) 4/3 12

(15, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 8.3 · 1021(g
3

) 1/6 20

(15, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 7.6 · 1021(g
3

) 2/3 20

TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under
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Helioscopes

CAST
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HB

Haloscopes
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5

RQ OQq ⇤
RQ
LP [GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ allowing for the d  4 and d = 5 Q-decay
operators listed in the second column, and yielding LP
at scales above 1018GeV. The fourth column gives the
anomaly contribution to the axion-photon coupling, and
the last one gives the DW number.

Table II. The corresponding couplings are given
in Fig. 2 by the set of oblique dotted lines, which
are plotted only at small ma values to give an idea
of the “density of preferred hadronic axion mod-
els”. All in all, we find that the strongest cou-
pling is obtained for Rs

Q = (3, 3,�4/3) that gives
Es/Ns � 1.92 ⇠ 12.75, almost twice the usually
adopted value of 7.0 [34], while the weakest cou-
pling is obtained for Rw

Q = (3, 2, 1/6) for which
Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single
RQ is present, according to our two selection criteria
all preferred hadronic axion models fall within the
band delimited by 5/3  E/N  44/3, as depicted
in Fig. 2. In the figure we have drawn with dashed
lines the boundary of the usual axion window and,
to compare theoretical predictions with the exper-
imental situation, we have also plotted the current
exclusion bounds and projected sensitivities.

VI. More RQ and axion-photon decoupling.
Let us now study to which extent the previous re-
sults can be changed by the presence of more RQ’s.
It would be quite interesting if, for example, ga��
could get enhanced. However, we can easily see that,
as long as the sign of �X = XL � XR is the same
for all RQ’s, this cannot occur. Let us write the
combined anomaly factor for RQ +Rs

Q:

Ec

Nc
⌘ E + Es

N +Ns
=

Es

Ns

✓
1 + E/Es

1 +N/Ns

◆
. (15)

Since by construction the anomaly coe�cients of any
RQ in our preferred set satisfy E/N  Es/Ns, the
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FIG. 2. The ga��/ma window for preferred axion mod-
els. The lines E/N = 44/3 and 5/3 encompass models
with a single RQ in Table II. The region below the line
E/N = 122/3 allows for two RQ’s. The yellow stripe
delimited by dashed lines reproduces the usual window
|E/N � 1.92| 2 [0.07, 7] [34]. Current (projected) exclu-
sion bounds are delimited by solid (dashed) lines. The
dark (light) orange band encompasses cosmologically in-
teresting models yielding ⌦a/⌦DM = 1 (> 0.01).

factor in parenthesis is never larger than one im-
plying Ec/Nc < Es/Ns. This is not so, however,
if we allow for opposite signs in the PQ charge dif-
ferences: �X = ��X s. In this case E/Es and
N/Ns become negative and ga�� can get enhanced.
The largest enhancement attainable with two RQ’s
is obtained with Rs

Q�Rw
Q. This still respects the LP

selection criterium and yields Ec/Nc = 122/3, cor-
responding in Fig. 2 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� be-
low the lower limit in Fig. 2, and even yield complete
axion-photon decoupling (within theoretical errors),
a possibility that requires an ad hoc choice of RQ’s,
but no numerical fine tuning. With two RQ’s there
are three such cases: (3, 3,�1/3) � (6, 1,�1/3);
(6, 1, 2/3)� (8, 1,�1) and (3, 2,�5/6)� (8, 2,�1/2)
giving respectively Ec/Nc = (23/12, 64/33, 41/21).
In all these cases the axion could be only detected
via its coupling to nucleons, providing additional
motivations for axion searches which do not rely on
the axion coupling to photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ allowing for the d  4 and d = 5 Q-decay
operators listed in the second column, and yielding LP
at scales above 1018GeV. The fourth column gives the
anomaly contribution to the axion-photon coupling, and
the last one gives the DW number.

Table II. The corresponding couplings are given
in Fig. 2 by the set of oblique dotted lines, which
are plotted only at small ma values to give an idea
of the “density of preferred hadronic axion mod-
els”. All in all, we find that the strongest cou-
pling is obtained for Rs

Q = (3, 3,�4/3) that gives
Es/Ns � 1.92 ⇠ 12.75, almost twice the usually
adopted value of 7.0 [34], while the weakest cou-
pling is obtained for Rw

Q = (3, 2, 1/6) for which
Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single
RQ is present, according to our two selection criteria
all preferred hadronic axion models fall within the
band delimited by 5/3  E/N  44/3, as depicted
in Fig. 2. In the figure we have drawn with dashed
lines the boundary of the usual axion window and,
to compare theoretical predictions with the exper-
imental situation, we have also plotted the current
exclusion bounds and projected sensitivities.

VI. More RQ and axion-photon decoupling.
Let us now study to which extent the previous re-
sults can be changed by the presence of more RQ’s.
It would be quite interesting if, for example, ga��
could get enhanced. However, we can easily see that,
as long as the sign of �X = XL � XR is the same
for all RQ’s, this cannot occur. Let us write the
combined anomaly factor for RQ +Rs

Q:

Ec
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✓
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Since by construction the anomaly coe�cients of any
RQ in our preferred set satisfy E/N  Es/Ns, the
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FIG. 2. The ga��/ma window for preferred axion mod-
els. The lines E/N = 44/3 and 5/3 encompass models
with a single RQ in Table II. The region below the line
E/N = 122/3 allows for two RQ’s. The yellow stripe
delimited by dashed lines reproduces the usual window
|E/N � 1.92| 2 [0.07, 7] [34]. Current (projected) exclu-
sion bounds are delimited by solid (dashed) lines. The
dark (light) orange band encompasses cosmologically in-
teresting models yielding ⌦a/⌦DM = 1 (> 0.01).

factor in parenthesis is never larger than one im-
plying Ec/Nc < Es/Ns. This is not so, however,
if we allow for opposite signs in the PQ charge dif-
ferences: �X = ��X s. In this case E/Es and
N/Ns become negative and ga�� can get enhanced.
The largest enhancement attainable with two RQ’s
is obtained with Rs

Q�Rw
Q. This still respects the LP

selection criterium and yields Ec/Nc = 122/3, cor-
responding in Fig. 2 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� be-
low the lower limit in Fig. 2, and even yield complete
axion-photon decoupling (within theoretical errors),
a possibility that requires an ad hoc choice of RQ’s,
but no numerical fine tuning. With two RQ’s there
are three such cases: (3, 3,�1/3) � (6, 1,�1/3);
(6, 1, 2/3)� (8, 1,�1) and (3, 2,�5/6)� (8, 2,�1/2)
giving respectively Ec/Nc = (23/12, 64/33, 41/21).
In all these cases the axion could be only detected
via its coupling to nucleons, providing additional
motivations for axion searches which do not rely on
the axion coupling to photons [52, 53].
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|E/N � 1.92| 2 [0.07, 7] [34]. Current (projected) exclu-
sion bounds are delimited by solid (dashed) lines. The
dark (light) orange band encompasses cosmologically in-
teresting models yielding ⌦a/⌦DM = 1 (> 0.01).

factor in parenthesis is never larger than one im-
plying Ec/Nc < Es/Ns. This is not so, however,
if we allow for opposite signs in the PQ charge dif-
ferences: �X = ��X s. In this case E/Es and
N/Ns become negative and ga�� can get enhanced.
The largest enhancement attainable with two RQ’s
is obtained with Rs

Q�Rw
Q. This still respects the LP

selection criterium and yields Ec/Nc = 122/3, cor-
responding in Fig. 2 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� be-
low the lower limit in Fig. 2, and even yield complete
axion-photon decoupling (within theoretical errors),
a possibility that requires an ad hoc choice of RQ’s,
but no numerical fine tuning. With two RQ’s there
are three such cases: (3, 3,�1/3) � (6, 1,�1/3);
(6, 1, 2/3)� (8, 1,�1) and (3, 2,�5/6)� (8, 2,�1/2)
giving respectively Ec/Nc = (23/12, 64/33, 41/21).
In all these cases the axion could be only detected
via its coupling to nucleons, providing additional
motivations for axion searches which do not rely on
the axion coupling to photons [52, 53].
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (36)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (38)

E =
X

Q

(XL � XR) Q2

Q , (39)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
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models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
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- Combined anomaly factor for              : 

• Strongest coupling (compatible with LP criterium) is obtained with   
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In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (36)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (38)

E =
X

Q

(XL � XR) Q2

Q , (39)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (37)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (38)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (38)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21) ⇡ (1.92, 1.94, 1.95). In all these cases the axion could be only detected via
its coupling to nucleons, providing additional motivations for axion searches which do not rely on the axion
coupling to photons [52, 53].
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (36)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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F · F̃ , (36)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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µ =
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G · G̃+
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4⇡
F · F̃ , (37)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (38)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (38)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
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Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21) ⇡ (1.92, 1.94, 1.95). In all these cases the axion could be only detected via
its coupling to nucleons, providing additional motivations for axion searches which do not rely on the axion
coupling to photons [52, 53].
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (35)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (37)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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F · F̃ , (37)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (38)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
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4⇡
F · F̃ , (38)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
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RQ OQq ⇤
RQ
LP [GeV] E/N NDW

(3, 1,�1/3) QLdR 9.3 · 1038(g1) 2/3 1

(3, 1, 2/3) QLuR 5.4 · 1034(g1) 8/3 1

(3, 2, 1/6) QRqL 6.5 · 1039(g1) 5/3 2

(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2

(3, 2, 7/6) QLuRH 5.6 · 1022(g1) 29/3 2

(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ allowing for the d  4 and d = 5 Q-decay
operators listed in the second column, and yielding LP
at scales above 1018GeV. The fourth column gives the
anomaly contribution to the axion-photon coupling, and
the last one gives the DW number.

Table II. The corresponding couplings are given
in Fig. 2 by the set of oblique dotted lines, which
are plotted only at small ma values to give an idea
of the “density of preferred hadronic axion mod-
els”. All in all, we find that the strongest cou-
pling is obtained for Rs

Q = (3, 3,�4/3) that gives
Es/Ns � 1.92 ⇠ 12.75, almost twice the usually
adopted value of 7.0 [34], while the weakest cou-
pling is obtained for Rw

Q = (3, 2, 1/6) for which
Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single
RQ is present, according to our two selection criteria
all preferred hadronic axion models fall within the
band delimited by 5/3  E/N  44/3, as depicted
in Fig. 2. In the figure we have drawn with dashed
lines the boundary of the usual axion window and,
to compare theoretical predictions with the exper-
imental situation, we have also plotted the current
exclusion bounds and projected sensitivities.

VI. More RQ and axion-photon decoupling.
Let us now study to which extent the previous re-
sults can be changed by the presence of more RQ’s.
It would be quite interesting if, for example, ga��
could get enhanced. However, we can easily see that,
as long as the sign of �X = XL � XR is the same
for all RQ’s, this cannot occur. Let us write the
combined anomaly factor for RQ +Rs

Q:

Ec

Nc
⌘ E + Es

N +Ns
=

Es

Ns

✓
1 + E/Es

1 +N/Ns

◆
. (15)

Since by construction the anomaly coe�cients of any
RQ in our preferred set satisfy E/N  Es/Ns, the
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FIG. 2. The ga��/ma window for preferred axion mod-
els. The lines E/N = 44/3 and 5/3 encompass models
with a single RQ in Table II. The region below the line
E/N = 122/3 allows for two RQ’s. The yellow stripe
delimited by dashed lines reproduces the usual window
|E/N � 1.92| 2 [0.07, 7] [34]. Current (projected) exclu-
sion bounds are delimited by solid (dashed) lines. The
dark (light) orange band encompasses cosmologically in-
teresting models yielding ⌦a/⌦DM = 1 (> 0.01).

factor in parenthesis is never larger than one im-
plying Ec/Nc < Es/Ns. This is not so, however,
if we allow for opposite signs in the PQ charge dif-
ferences: �X = ��X s. In this case E/Es and
N/Ns become negative and ga�� can get enhanced.
The largest enhancement attainable with two RQ’s
is obtained with Rs

Q�Rw
Q. This still respects the LP

selection criterium and yields Ec/Nc = 122/3, cor-
responding in Fig. 2 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� be-
low the lower limit in Fig. 2, and even yield complete
axion-photon decoupling (within theoretical errors),
a possibility that requires an ad hoc choice of RQ’s,
but no numerical fine tuning. With two RQ’s there
are three such cases: (3, 3,�1/3) � (6, 1,�1/3);
(6, 1, 2/3)� (8, 1,�1) and (3, 2,�5/6)� (8, 2,�1/2)
giving respectively Ec/Nc = (23/12, 64/33, 41/21).
In all these cases the axion could be only detected
via its coupling to nucleons, providing additional
motivations for axion searches which do not rely on
the axion coupling to photons [52, 53].
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More Q’s
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(3, 2,�5/6) QLdRH
† 4.3 · 1027(g1) 17/3 2
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(3, 3,�1/3) QRqLH
† 5.1 · 1030(g2) 14/3 3

(3, 3, 2/3) QRqLH 6.6 · 1027(g2) 20/3 3

(3, 3,�4/3) QLdRH
†2 3.5 · 1018(g1) 44/3 3

(6, 1,�1/3) QL�µ⌫dRG
µ⌫ 2.3 · 1037(g1) 4/15 5

(6, 1, 2/3) QL�µ⌫uRG
µ⌫ 5.1 · 1030(g1) 16/15 5

(6, 2, 1/6) QR�µ⌫qLG
µ⌫ 7.3 · 1038(g1) 2/3 10

(8, 1,�1) QL�µ⌫eRG
µ⌫ 7.6 · 1022(g1) 8/3 6

(8, 2,�1/2) QR�µ⌫`LG
µ⌫ 6.7 · 1027(g1) 4/3 12

(15, 1,�1/3) QL�µ⌫dRG
µ⌫ 8.3 · 1021(g3) 1/6 20

(15, 1, 2/3) QL�µ⌫uRG
µ⌫ 7.6 · 1021(g3) 2/3 20

TABLE II. RQ allowing for the d  4 and d = 5 Q-decay
operators listed in the second column, and yielding LP
at scales above 1018GeV. The fourth column gives the
anomaly contribution to the axion-photon coupling, and
the last one gives the DW number.

Table II. The corresponding couplings are given
in Fig. 2 by the set of oblique dotted lines, which
are plotted only at small ma values to give an idea
of the “density of preferred hadronic axion mod-
els”. All in all, we find that the strongest cou-
pling is obtained for Rs

Q = (3, 3,�4/3) that gives
Es/Ns � 1.92 ⇠ 12.75, almost twice the usually
adopted value of 7.0 [34], while the weakest cou-
pling is obtained for Rw

Q = (3, 2, 1/6) for which
Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single
RQ is present, according to our two selection criteria
all preferred hadronic axion models fall within the
band delimited by 5/3  E/N  44/3, as depicted
in Fig. 2. In the figure we have drawn with dashed
lines the boundary of the usual axion window and,
to compare theoretical predictions with the exper-
imental situation, we have also plotted the current
exclusion bounds and projected sensitivities.

VI. More RQ and axion-photon decoupling.
Let us now study to which extent the previous re-
sults can be changed by the presence of more RQ’s.
It would be quite interesting if, for example, ga��
could get enhanced. However, we can easily see that,
as long as the sign of �X = XL � XR is the same
for all RQ’s, this cannot occur. Let us write the
combined anomaly factor for RQ +Rs

Q:

Ec

Nc
⌘ E + Es

N +Ns
=

Es

Ns

✓
1 + E/Es

1 +N/Ns

◆
. (15)

Since by construction the anomaly coe�cients of any
RQ in our preferred set satisfy E/N  Es/Ns, the
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FIG. 2. The ga��/ma window for preferred axion mod-
els. The lines E/N = 44/3 and 5/3 encompass models
with a single RQ in Table II. The region below the line
E/N = 122/3 allows for two RQ’s. The yellow stripe
delimited by dashed lines reproduces the usual window
|E/N � 1.92| 2 [0.07, 7] [34]. Current (projected) exclu-
sion bounds are delimited by solid (dashed) lines. The
dark (light) orange band encompasses cosmologically in-
teresting models yielding ⌦a/⌦DM = 1 (> 0.01).

factor in parenthesis is never larger than one im-
plying Ec/Nc < Es/Ns. This is not so, however,
if we allow for opposite signs in the PQ charge dif-
ferences: �X = ��X s. In this case E/Es and
N/Ns become negative and ga�� can get enhanced.
The largest enhancement attainable with two RQ’s
is obtained with Rs

Q�Rw
Q. This still respects the LP

selection criterium and yields Ec/Nc = 122/3, cor-
responding in Fig. 2 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� be-
low the lower limit in Fig. 2, and even yield complete
axion-photon decoupling (within theoretical errors),
a possibility that requires an ad hoc choice of RQ’s,
but no numerical fine tuning. With two RQ’s there
are three such cases: (3, 3,�1/3) � (6, 1,�1/3);
(6, 1, 2/3)� (8, 1,�1) and (3, 2,�5/6)� (8, 2,�1/2)
giving respectively Ec/Nc = (23/12, 64/33, 41/21).
In all these cases the axion could be only detected
via its coupling to nucleons, providing additional
motivations for axion searches which do not rely on
the axion coupling to photons [52, 53].
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More Q’s

E/
N = 

12
2/

3

[Di Luzio, Mescia, Nardi (2016)]
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- provides an excellent DM candidate 
- is unambiguously testable by detecting the axion 

- reduce non-perturbative QCD uncertainties, especially on gaγγ and fa
- limit theoretical uncertainties due to “model building”             
- understand why U(1)PQ  is of the required extremely good quality            
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- solves the strong CP problem 
- provides an excellent DM candidate 
- is unambiguously testable by detecting the axion 

- reduce non-perturbative QCD uncertainties 
- reduce theoretical error due to “model building”             
- understand why U(1)PQ  is of the required good quality            

- experiments are entering now the preferred window for the QCD axion 
- new ideas are being put forth (CASPEr, Xenon e- recoil, super-radiance)

• Here: axion window defined through precise pheno requirements.  
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Unificaxion ?
• Some Q’s might improve gauge coupling unification  

at one loop. We di↵er with respect to that by the fact that we perform a two-loop analysis of
gauge coupling unification, which leads to mQ = 2⇥ 107 GeV.

Figure 2: Two-loop gauge coupling unification pattern in presence of an extra Dirac fermion
Q ⇠ (3, 2, 1/6) with mQ = 2⇥ 107 GeV (blue line), against the SM case (red dashed line).

On the other hand, it is not easy to envisage a GUT completion featuring a hierarchy
fa ⌧ M

GUT

in which only a fragment Q of a complete GUT multiplet survives at mQ . fa.
The point is simply stated: as long as the PQ symmetry commutes with the GUT group, the
whole GUT multiplet containing Q (e.g. 10 3 Q in SU(5)) acquires a mass of O(fa) after PQ
breaking. Consequently, having a complete GUT multiplet at intermediate scales does not
improve on gauge coupling unification.

The source of the problem points to its possible solution: if the PQ does not commute with
the GUT group, but arises as an accidental global symmetry after GUT breaking, then the
previous conclusion could be avoided. Unfortunately, we are not aware of a working example.
Another possibility would be instead to give up on a 4D description. In fact, string-inspired
scenarios allow in principle to avoid matter unification while keeping gauge coupling unification
(and they might be as well behind the stabilization mechanism of the PQ symmetry against
Planck scale physics). Of course, at this level this is just wishful thinking.

3 Heavy quarks’ cosmology

3.1 Lifetimes

The lifetime of the metastable heavy quark is a crucial information for cosmology. We provide
here a quantitative estimate of the Q decay rates by considering in turn the case where the
decay of Q happens via a renormalizable interaction with SM quarks and the case of Q-decay
operators via e↵ective operators.

3.1.1 Q-decay via renormalizable interactions

As an example of the decay via mixing mechanism, let us consider the first case in Table 3
(Q ⇠ (3, 1,�1/3) and (XL,XR) = (0,�1)). The relevant part of the Lagrangian is

L
KSVZ

� �yQLQR��m
mix

QLdR � ydqLdRH , (13)

13

- out of all our 15 cases, just one works fine: Q ~ (3, 2, 1/6)

[Giudice, Rattazzi, Strumia, 1204.5465]
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• Conceiving a UV model remains, however, a challenge
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set
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- a complete GUT multiplet doesn’t help !
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Experimental axion searches
• Many different ways to search for axions: 

- Helioscopes (axions from the Sun)

- Haloscopes (axion DM)

- New ideas… 

- Astrophysical bounds 
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Haloscopes
• Look for DM axions with a microwave resonant cavity [Sikivie (1983)]

Georg Raffelt, MPI Physics, Munich Off-the-Beaten-Track Dark Matter, ICTP, Trieste 13–17 April 2015

Experimental Tests of Invisible Axions

  Pierre Sikivie: 

Macroscopic B-field can provide a 

large coherent transition rate over 

a big volume (low-mass axions) 

• Axion helioscope: 

   Look at the Sun through a dipole magnet 

• Axion haloscope: 

   Look for dark-matter axions with 

   A microwave resonant cavity

Redefining the Axion Window

Luca Di Luzio,1, ⇤ Federico Mescia,2, † and Enrico Nardi3, ‡

1Institute for Particle Physics Phenomenology,
Department of Physics, Durham University, DH1 3LE, UK

2Dept. de F́ısica Quàntica i Astrof́ısica, Institut de Ciències del Cosmos (ICCUB),
Universitat de Barcelona, Mart́ı Franquès 1, E08028 Barcelona, Spain

3INFN, Laboratori Nazionali di Frascati, C.P. 13, 100044 Frascati, Italy

A major goal of axion searches is to reach inside the parameter space region of realistic axion
models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it
would be desirable to specify them in terms of precise phenomenological requirements. We consider
hadronic axion models and classify the representations RQ of the new heavy quarks Q. By requiring
that i) the Q are su�ciently short lived to avoid issues with long lived strongly interacting relics,
ii) no Landau poles are induced below the Planck scale, fifteen cases are selected, which define a
phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-
photon coupling about twice (four times) stronger than commonly assumed. Allowing for more than
one RQ, stronger couplings, as well as complete axion-photon decoupling, become possible.

PACS numbers: 14.80.Va, 14.65.Jk

k (1)

ma ' m⇡
f⇡
fa

' 6 meV
109 GeV

fa
(2)

1

fa
(3)

La�� = �1

4
ga�� aF · F̃ = ga�� aE ·B (4)

I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional

rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a
challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current

—  power of axions converting into photons in an EM cavity 

6. Axion searches

where E and B are respectively the standard electric and magnetic field of the coupling
photons respectively, it is possible to detect the axion [307]. Indeed, axions passing
through an electromagnetic cavity, where a strong electromagnetic field with a frequency
related to the size of the cavity is produced, could resonantly convert into photons when
the cavity resonant frequency !a matches with the axion mass ma.

Relic axions from the Big Bang are gravitationally bound to the Milky Way with a
non relativistic velocity v and dispersion1 �v ' 10�3. Consequently, the predicted axion
mean energy would be

E ' ma

✓

1 +
�v2

2

◆

, (6.2)

with energy dispersion �E = 1
2
ma �v2 ' 10�6.

The power of axions converting into photons in an electromagnetic cavity is given by

Pa = Cg2
a��V B2

0

⇢a

ma

Qe↵ , (6.3)

where C is a constant that depends on the transverse magnetic cavity modes, V is the
volume of the cavity, B0 is the magnetic field, and Qe↵ is an effective quality factor that
is smaller or equal than the cavity’s quality factor QL and the quality factor for the
axion signal Qa ' 1/�v2 ⇠ 106. Three physical parameters that are extremely important
are the axion-photon coupling ga��, the axion mass ma and the local axion density ⇢a.
Such an experiment would lead to measurements of the axion-photon coupling and its
mass, once the local axion DM density is fixed to its value [314, 315]. The resonant
condition requires that the frequency of the cavity must be equal to the axion mass
⌫ = ma(1 + �v2/2). Therefore, should the axion be discovered by such experiments, its
mass would be known with a precision comparable to the suppressed line width of the
resonance, �ma/ma ⇠ O(10�6).

The drawback of cavity microwave experiments is that the cavity frequency has to be
equal to the energy of the axion, which is essentially given by its mass. Since the axion
mass is not known and it may be in a wide range, these experiments require a slow scan
over large numbers of frequencies.

The first experiments of this kind were performed at the Brookhaven National Lab-
oratory [316, 317] and at the University of Florida [318], and excluded an axion mass in
the range [4.5, 16.3] µeV, without reaching the photon coupling characteristic of the QCD
axion. The best sensitivity is currently achieved by the Axion Dark Matter eXperiment
(ADMX) [319]. Currently, ADMX excludes the region between 1.9 and 3.65 µeV, for an
axion photon coupling larger than ⇠ 10�15 GeV�1, on the edge of the KSVZ QCD axion

1We use natural units where c =

/h = 1.

106

- resonance condition:  need to tune the frequency of the EM cavity 
on the axion mass 

— exploits Primakoff effect: axion-photon transition in external  
     static E or B field 
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Haloscopes

6.1 Laboratory searches

Figure 6.1: Search reach of ADMX and ADMX-HF over the next years in the ma-|ga�� |
plane. The blue shaded area denotes the current limits from ADMX. The shaded green
regions are the reach of the future stages of ADMX. The red curves show the QCD axion
parameter space.

model, see figure 6.1. In the figure it is also shown the possible future reach of the high
frequency version of ADMX (ADMX-HF), that may cover along the years the QCD axion
parameter space for ma 2 [2, 40] µeV.

Future experiments

New search concepts for the detection of dark matter axions have been proposed in the
last years. The authors of [320] proposed a microwave resonator structure sensitive to
dark matter axions with an expected sensitivivity to dark matter axion mass between 40

and 600 µeV for axion photon couplings below 10�14 GeV�1.
Alternatively, the oscillating axion field induces oscillating electric dipole moments

that cause a precession of nuclear spins in spin polarised nucleon in presence of an electric
field. Consequently, it is possible to search for the resulting transverse magnetisation
exploiting nuclear magnetic resonance techniques. The Cosmic Axion Spin Precession
Experiment (CASPEr) searches for two different couplings of the axion [311]. On one
hand, CASPER-Wind searches for the axion wind effect which causes a precession of the
nuclear spin, probing the pseudo-scalar coupling gaNN . On the other hand, CASPER-
Electric exploits the time varying nucleon electric dipole moment gd caused by the axion.
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• Look for DM axions with a microwave resonant cavity

- Axion Dark Matter eXperiment (ADMX) (U. of Washington)

ADMX,,
Axion&Dark&Ma,er&eXperiment,
(U.,of,Washington),
,

ADMX,searches,for,axions,by,,
slowly,scanning,the,cavity,
resonant,,frequency,by,
adjus?ng,posi?ons,,of,two,
tuning,rods,within,the,cavity.,,
A,signal,appears,when,the,
cavity,resonant,frequency,
matches,the,,axion,mass.,

HALOSOPES,(Cavity,Experiments),
,
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Helioscopes
• The Sun is a potential axion source 
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Figure 1: Left: Schematic of an enhanced axion helioscope: solar axions travelling through an intense transverse magnetic field with an axion-
sensitive area A, are converted into x-rays. With the help of x-ray focusing devices, these are concentrated onto a spot on low background detectors
(figure from [2]). Right: The solar axion flux as expected at the Earth. A value of 1 × 10−10 GeV−1 for gaγ is assumed.

As Fig. 1(right) shows, the expected signal is in the
energy range of 1–10 keV. The operation of a helio-
scope consists in following the Sun as long as techni-
cally possible, in axion sensitive conditions, and taking
background data when there is no alignment with the
Sun. The sought-after signal would be the excess of
photons in the expected energy range that the x-ray de-
tectors will register when tracking the Sun, compared
to the background gathered during the rest of the time.
The number of excess photons expected depends on the
very weak gaγ coupling constant, which is a measure of
a helioscope’s sensitivity. According to the following
expression [13]

g4
aγ ∼ B2L2A ϵdb−1/2 ϵoa−1/2 ϵ1/2t t1/2, (1)

four are the main parameters to take into account when
designing a helioscope: a) time: the total time of data-
taking of the experiment t and ϵt, the fraction of time
the magnet tracks the Sun; b) magnet: the length L and
the strength B of the provided magnetic field as well as
the axion-sensitive area A; c) low-background x-ray de-
tectors: the background level b and their detection effi-
ciencies ϵd and d) x-ray focusing optics: their efficiency
ϵo and total focusing area a. The focusing devices are
an addition to the classical helioscope experiment, and
were implemented for the first time in the third genera-
tion axion helioscope, the CAST experiment.

3. The CERN Axion Solar Telescope (CAST)

The CERN Axion Solar Telescope (CAST) presented
an important improvement in the sensitivity of the he-
lioscope technique, based on two major innovations; fo-
cusing optics and low background techniques for the de-
tectors. CAST is the first helioscope to use an x-ray tele-
scope, comprising of an x-ray focusing device coupled
to a Charged Coupled Device (CCD) camera, recycled

from the ABRIXAS and XMM-Newton space missions.
The addition of the telescope improved the signal-to-
noise ratio of the system and therefore the sensitivity of
the experiment. On the magnet front, CAST recycled a
decommissioned LHC prototype magnet, which reaches
9 T over a length of 10 m. The magnet has two bores
and has been equipped with up to four detectors; the x-
ray telescope mentioned above, and three Micromegas
detectors was the latest configuration. The total axion-
sensitive area achieved in this way is ∼ 30 cm2. The
whole system is sitting on a movable platform con-
trolled by a tracking system, pointing it to the centre
of the Sun during 1.5 h twice a day, at sunrise and at
sunset.

Since 2003, when CAST started operating, data have
been taken in different experimental conditions which
gradually extended the axion mass sensitivity of the ex-
periment: from keeping the magnet bores under vac-
uum (ma !0.02 eV) [14, 15] to gradually filling them
with 4He (ma !0.39 eV) [16] and later on with 3He.
The first part of the 3He data covered the mass range
up to ma ∼0.64 eV [17] and in 2011 masses up to
ma ∼1.17 eV were reached. A part of these data has
been analyzed and has shown no excess of signal over
background, leading to an upper bound of the axion-to-
photon constant of gaγ < 3.3 × 10−10 GeV−1 for the
mass range between 0.64 eV and 1.17 eV [18]. CAST
has provided the most stringent limits on the axion-to-
photon coupling constant over a large part of the axion
masses and has covered -for the first time- part of the
QCD-favoured band for masses above ∼0.15 eV, as can
be seen in Fig. 2.

Currently, CAST is revisiting the vacuum phase; this
time with the aim, on one hand to look at the low energy
part for evidence of other hypothetical particles such as
chameleons, which appear in Dark Energy models or
hidden photons [19], and on the other to exploit the

T. Dafni et al. / Nuclear and Particle Physics Proceedings 273–275 (2016) 244–249246

Georg Raffelt, MPI Physics, Munich Off-the-Beaten-Track Dark Matter, ICTP, Trieste 13–17 April 2015

Experimental Tests of Invisible Axions

  Pierre Sikivie: 

Macroscopic B-field can provide a 

large coherent transition rate over 

a big volume (low-mass axions) 

• Axion helioscope: 

   Look at the Sun through a dipole magnet 

• Axion haloscope: 

   Look for dark-matter axions with 

   A microwave resonant cavity

- macroscopic B-field can provide a large coherent transition rate over a big volume 
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Helioscopes
• The Sun is a potential axion source 

- CERN Axion Solar Telescope (CAST) 

- International AXion Observatory (IAXO)

IAXO The International Axion Observatory
Letter of Intent

Version: 1.0
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Figure 26: Close-up of the high mass part of parameter space of Fig. 25 (1 meV < ma < 1 eV).

sizeable coupling gae because it can detect the flux of solar axions originating from axion-Bremsstrahlung
(electron-ion and electron-electron) Compton, and, to a lesser extent, axio-deexcitation of ions (together
referred to BCA reactions).

As seen in figure 2, for this kind of models, the flux of solar axion produced via BCA processes
may be up to 10

2 times larger than the standard Primakoff axions, providing a relevant opportunity to be
searched for at helioscopes [134]. The energies of these axions are somehow lower than the Primakoff
ones, falling in the range of about 0.5-2 keV. Provided the threshold of the IAXO optics and detectors
is low enough, something that it is technically feasible if taking into account at design time, competitive
sensitivity to these models can be reached.

In this case the expected signal depends on gaega� , the product of the electron coupling (responsible
for the production in the Sun) and the two-photon coupling (responsible for the detection in IAXO). The
plot on the left of fig. 27 shows the computed sensitivity of IAXO to the product gaega� assuming that
the Primakoff emission from the Sun is subdominant and therefore the solar flux is caused by the BCA
reactions alone. The computation is performed in a similar way and with the same assumed parameters
than in previous section. The additional input is that energy threshold for both detectors and optics is
set at 0.5 keV, with background and efficiencies comparable to the ones in previous section down to this
threshold. Under the assumption of no positive signal, IAXO could be able to constrain

ga�gae < 2.5⇥ 10

�25

GeV

�1

(95% CL) (21)

at low masses ma . 10 meV — where the probability of axion-photon conversion in IAXO becomes
independent of the mass — and worsens as 1/m2

a for higher masses. In general, IAXO would be sensitive
to the region above the black lines (nominal and enhanced IAXO scenarios) in plot on the left of Fig. 27.
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Axion couplings to photons
• Axion mass

Redefining the Axion Window

Luca Di Luzio,1, ⇤ Federico Mescia,2, † and Enrico Nardi3, ‡
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A major goal of axion searches is to reach inside the parameter space region of realistic axion
models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it
would be desirable to specify them in terms of precise phenomenological requirements. We consider
hadronic axion models and classify the representations RQ of the new heavy quarks Q. By requiring
that i) the Q are su�ciently short lived to avoid issues with long lived strongly interacting relics,
ii) no Landau poles are induced below the Planck scale, fifteen cases are selected, which define a
phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-
photon coupling about twice (four times) stronger than commonly assumed. Allowing for more than
one RQ, stronger couplings, as well as complete axion-photon decoupling, become possible.

PACS numbers: 14.80.Va, 14.65.Jk

k (1)

ma ' m⇡
f⇡
fa

' 6 meV
109 GeV

fa
(2)

I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a
challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general
it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (3)

where G, F are the color and electromagnetic field
strength tensors, G̃, F̃ their duals, and N and E are

The function E [q] can be written in terms of elliptic functions but the integral form is more
compact. Note that changing the quark masses over the whole possible range, q 2 [0, 1], only
varies E [q] between E [0] = 1 (cosine-like potential limit) and E [1] = 4�2

p
2 ' 1.17 (for degenerate

quarks). For physical quark masses E [q
phys

] ' 1.12, only 12% o↵ the cosine potential prediction,
and � ' 9m

a

f 2
a

.

In a non vanishing axion field background, such as inside the domain wall or to a much lesser
extent in the axion dark matter halo, QCD properties are di↵erent than in the vacuum. This can
easily be seen expanding eq. (8) at the quadratic order in the pion field. For hai = ✓f

a

6= 0 the
pion mass becomes

m2
⇡

(✓) = m2
⇡

s

1� 4m
u

m
d

(m
u

+m
d

)2
sin2

✓

✓

2

◆

, (16)

and for ✓ = ⇡ the pion mass is reduced by a factor
p

(m
d

+m
u

)/(m
d

�m
u

) ' p
3. Even more

drastic e↵ects are expected to occur in nuclear physics (see e.g. [34]).

The axion coupling to photons can also be reliably extracted from the chiral Lagrangian.
Indeed at leading order it can simply be read out of eqs. (4), (5) and (14)1:

g
a��

=
↵
em

2⇡f
a



E

N
� 2

3

4m
d

+m
u

m
d

+m
u

�

, (17)

where the first term is the model dependent contribution proportional to the EM anomaly of the
PQ symmetry, while the second is the model independent one coming from the minimal coupling
to QCD at the non-perturbative level.

The other axion couplings to matter are either more model dependent (as the derivative cou-
plings) or theoretically more challenging to study (as the coupling to EDM operators), or both.
In section 2.4, we present a new strategy to extract the axion couplings to nucleons using ex-
perimental data and lattice QCD simulations. Unlike previous studies our analysis is based only
on first principle QCD computations. While the precision is not as good as for the coupling to
photons, the uncertainties are already below 10% and may improve as more lattice simulations
are performed.

Results with the 3-flavor chiral Lagrangian are often found in the literature. In the 2-flavor
Lagrangian the extra contributions from the strange quark are contained inside the low-energy
couplings. Within the 2-flavor e↵ective theory the di↵erence between using 2 or 3 flavor formulae,
is a higher order e↵ect. Indeed the di↵erence is O(m

u

/m
s

) which corresponds to the expansion
parameter of the 2-flavor Lagrangian. As we will see in the next section these e↵ects can only be
consistently considered after including the full NLO correction.

At this point the natural question is, how good are the estimates obtained so far using lead-
ing order chiral Lagrangians? In the 3-flavor chiral Lagrangian NLO corrections are typically
around 20-30%. The 2-flavor theory enjoys a much better perturbative expansion given the larger
hierarchy between pions and the other mass thresholds. To get a quantitative answer the only

1The result can also be obtained using a di↵erent choice of Qa, but in this case the non-vanishing a-⇡0 mixing
would require the inclusion of an extra contribution from the ⇡0�� coupling.

7

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

EM anomaly long distance QCD

directly work in the 2-flavor e↵ective theory, with M
a

capturing the whole axion dependence, at
least for observables that do not depend on the derivative couplings.

At the leading order in the chiral expansion all the non-derivative dependence on the axion is
thus contained in the pion mass terms:

L
p

2 � 2B0
f 2
⇡

4
hUM †

a

+M
a

U †i , (6)

where

U = ei⇧/f⇡ , ⇧ =

✓

⇡0
p
2⇡+p

2⇡� �⇡0

◆

, (7)

h· · · i is the trace over flavor indices, B0 is related to the chiral condensate and determined by
the pion mass in term of the quark masses, and the pion decay constant is normalized such that
f
⇡

' 92 MeV.

In order to derive the leading order e↵ective axion potential we need only consider the neutral
pion sector. Choosing Q

a

proportional to the identity we have
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. (9)

On the vacuum ⇡0 gets a vacuum expectation value (VEV) proportional to �
a

to minimize the
potential, the last cosine in eq. (8) is 1 on the vacuum, and ⇡0 can be trivially integrated out
leaving the axion e↵ective potential

V (a) = �m2
⇡

f 2
⇡

s

1� 4m
u

m
d
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u
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d
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sin2

✓

a

2f
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◆

. (10)

As expected the minimum is at hai = 0 (thus solving the strong CP problem). Expanding to
quadratic order we get the well-known [5] formula for the axion mass

m2
a

=
m

u

m
d

(m
u

+m
d

)2
m2

⇡

f 2
⇡

f 2
a

. (11)

Although the expression for the potential (10) was derived long ago [32], we would like to stress
some points often under-emphasized in the literature.

The axion potential (10) is nowhere close to the single cosine suggested by the instanton
calculation (see fig. 1). This is not surprising given that the latter relies on a semiclassical ap-
proximation, which is not under control in this regime. Indeed the shape of the potential is O(1)

5
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EDM of the neutron
• Estimate from the nucleon-pion effective lagrangian 

612 Weak interactions 

A more important consequence is that the neutron picks up an electric dipole mOm 
proportional to e. The calculation is not trivial , so we will only sketch it. The neutron a

ent 

the proton form an isospin doublet, so their couplings to the pion have to be of the forrn nd 

(29.108) 

where 'it is the proton-neutron isospin doublet. The first term is the ordinary Yukawa cou-
pling to the pseudoscalar pions, which gives rise to the Yukawa potential describing the 
strong force among nucleons. The second term is CP-violating and must be pro-
portional to e. Upgrading isospin to SU(3) and using baryon mass relations one can Show 
that [Crewther et al., 1979] 

_ 2ms m um d . - -
97rNN = f ( ) (M=. - M N)8 ;:::;:; 0.04B , 

7r m u + m d (29.109) 

which can be compared to 9rrNN = 13.4. Loops of pions such as 

, \ 

neutron proton neutron 

(29.110) 

(with the CP violation coming in at the 9rrNN vertex) generate a neutron electric dipole 
moment. These loops are UV divergent. Cutting off the UV divergences at mN gives 

(29.111) 

The current bound on the neutron EDM is IdNI < IdNI < 2.9 x 1O- 26e · cm, so that 

e < 10-10 . (29.112) 

The smallness of e despite the large amount of C P violation in the weak sector is known 
as the strong CP problem. 

Possible solutions to the strong C P problem include: 

• One of the quarks is massless, mu = O. Unfortunately there is no symmetry protecting 
m u = 0, since the chiral symmetry is anomalous . So m u would just have to be tuned 
to be small instead of tuning e to be small. Thus, the mu = 0 solution just moves the 
fine-tuning problem around. 

• Axions. The idea behind axions is to add fields to the Standard Model so that there 
is a new anomalous U(l) symmetry. This symmetry is known after its authors as a 
Peccei-Quinn symmetry. If this U(1)PQ is spontaneously broken, it will generate a 
new Goldstone boson, a. Then a chira! rotation can move the Goldstone boson into the 
e parameter, modifying the energy in Eq. (29.107) to 

( - ) 2 2 ( - a(x)) E 8, a =F7r m7r cos 8- T ' (29.l13) 

where fa is the axion decay constant. Then (a) = e and the ground state has no effec-
tive e. The excitations around this vacuum are known as axions, and additionally provide 
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PACS numbers: 14.80.Va, 14.65.Jk

k (1)

I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatural
values, like the coe�cient µ2 of the quadratic Higgs
potential term, the Yukawa couplings of the first
family fermions he,u,d ⇠ 10�6�10�5 and the strong
CP violating angle ✓ < 10�10. This last quantity
is somewhat special: its value is stable with respect
to higher order corrections (unlike µ2) and (unlike
he,u,d) it evades explanations based on environmen-
tal selection [? ]. Thus, seeking explanations for
the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility, a
massless up-quark, is now ruled out [? ? ]. The so-
called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [? ]. The
Peccei-Quinn (PQ) solution [? ? ? ? ] arguably
stands on better theoretical grounds, although it re-
mains a challenge explaining through which mech-
anism the global U(1)PQ symmetry, on which the
solution relies (and that presumably arises as an ac-
cident) remains protected from explicit breaking to
the required level of accuracy [? ? ? ].
Setting aside theoretical considerations, the issue

if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no

similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [? ? ? ]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [? ? ], the resulting
window encompasses also the DFSZ axion [? ? ]
and many of its variants [? ].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general
it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (2)

where G, F are the color and electromagnetic field
strength tensors, G̃, F̃ their duals, and N and E
are the color and electromagnetic anomaly coe�-
cients. In a generic axion model of KSVZ type [? ?
] the anomaly is induced by pairs of heavy fermions
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1 Introduction

The strong CP problem is elegantly solved by promoting the θ̄ parameter1 of QCD to a dynamical

field known as the axion [1, 2, 3, 4]. This is accomplished by introducing an anomalous PQ

symmetry that is spontaneously broken, yielding a Nambu-Goldstone boson whose potential is

generated non-perturbatively by QCD instantons. When this axion dynamically relaxes to the

minimum of its potential, the θ̄ parameter is effectively set to zero.

In order for this mechanism to succeed, however, the axion must originate from a PQ sym-

metry which is of extraordinarily high quality [5, 6, 7]. In particular, if the PQ symmetry is

spontaneously broken by a field φ at a scale f , then there will in general exist explicit PQ

violating, dimension n operators of the form

O!PQ = k
φn

Λn−4

SSB
−→ |k|

fn

Λn−4
cos(na + arg k), (1)

which can easily displace2 the minimum of the axion potential by more than θ̄ = 10−10 and

effectively reintroduce the strong CP problem (see figure 1). In the most optimistic scenario,

Λ = mPl is taken to be the Planck scale while f = 109 GeV is taken to be as small as possible

consistent with supernova constraints [8]. Even so, if |k| is of order unity then one requires n ≥ 10

to successfully solve the strong CP problem. Conversely, if the leading irrelevant operator, n = 5,

is to be adequately suppressed, then it is necessary that |k| < 10−40. Of course, the situation is

even more dire if the axion decay constant is larger or if the fundamental gravity scale is low.

It has been argued that global symmetry violating operators of this kind should be induced at

the Planck scale by quantum gravitational effects [9, 10, 11, 12, 13]. For instance, a virtual black

hole produced from some initial state of definite global charge will readily Hawking evaporate

into a state of differing global charge—integrating out such processes yields Planck-suppressed,

global symmetry violating operators at low energies.

Because these results arise from quantum gravity, it is natural to consider string theoretic

constructions in which non-perturbative violations of global symmetries are actually calculable.

In certain cases, one can identify PQ symmetries which are exact up to stringy instanton correc-

tions of order |k| ∼ e−S, where S is the string action evaluated on some background [14]. This

effectively reduces an extreme tuning to the logarithm of an extreme tuning.

While the stringy approach to PQ symmetry protection has its merits, it is important that

we fully explore the limits of purely field theoretic alternatives. This is the starting point of

the present work. In particular, we adopt the philosophy of the effective field theorist, which is

1Throughout this work, θ̄ will denote the physically observable strong CP phase, which includes the overall
phase of the colored fermion mass matrix.

2It is conceivable that arg k = −nθ̄, in which case the axion minimum is not displaced, but this would require
an incredible fine-tuning.
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A threat to the PQ solution

- global charges can be eaten by black holes, which may subsequently evaporate

• Parametrizing explicit breaking by effective operators:

• “Folk’s theorem” on the non-existence of global symmetries in quantum gravity  

[Bekenstein (1972), Zeldovich (1977)]

[Kamionkowski, March-Russell (1992), Holman et al. (1992), Barr, Seckel (1992)]
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I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a
challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general
it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (3)

where G, F are the color and electromagnetic field
strength tensors, G̃, F̃ their duals, and N and E are

• Axion couplings

hadrons leptons
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by considering the weak interactions alone without the
determinental interaction, but the conditions of the fla-
vor singlet, chirality flipping (L↔R) and CP violating
effects do not occur at one loop level. In the SM with
the Kobayashi-Maskawa CP violation, Ref. [153, Ellis,
Gaillard (1979)] shows that a finite correction occurs at
the fourth order, O(α2), leading to a very small NEDM,
but infinite corrections occur from O(α7). These can
give rise to a linear term of π. In the SM, the pioneering
calculation with axion has been performed in chiral per-
turbation theory to obtain θ ≤ 10−17 [167, 168, Georgi,
Kaplan, Randall (1986), Georgi, Randall (1986)]. The es-
timated θ however is far below the current experimental
limit of 10−11.

C. Axion couplings

The axion interactions are given in Eq. (19) which
are depicted in Fig. 10 where we have not drawn aWW̃
and aZZ̃ diagrams which are orthogonal to the aγγ̃. The
diagrams of Fig. 10 are complete for the low energy axion
phenomenology, where the suppression factor, 1/Fa, by
the axion decay constant is explicitly shown.

• cq
1γµγ5

1
Fa

a

q

q

• cq
2iγ5

1
Fa

a

q

q

•
c31
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•
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a

γ

γ

• cℓiγ5
1
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a

ℓ

ℓ

FIG. 10: The Feynman diagrams of axion couplings. G and
γ are gluon and photon, respectively. c3 and caγγ couplings
are anomalous.

1. Axion hadron coupling

When we discuss axion–hadron interactions, which are
the relevant ones for low energy laboratory experiments
and physics at the core of supernovae, we must integrate
out gluon fields. Technically, it is achieved by using the
reparametrization invariance to remove the c3θGG̃ cou-
pling. If we keep the c3 coupling, we must consider the
axion–gluon–gluon interactions also, which is hard to be
treated accurately with its face value but must be the
same as the one in the c3 = 0 basis. In this way, the
quark interactions are changed from the original value as

c1 → c̄1 = c1 + 1
2c3

c2 → c̄2 = c2 + c3

c3 → c̄3 = c3 − c3 = 0.

(49)

In the barred notation, there exist only c̄1 and c̄2.

We will discuss one family without separating c1,2

into cu,d
1,2 first for an illustration, and then we will dis-

cuss the cases with cu,d
1,2 and write down formulae for

three families. Let us define the initial parameters c1, c2

and c3 together with the definition of the vacuum an-
gle θ0 ≡ θQCD. In principle, the initial vacuum angle
can be a free parameter. Here, the vacuum angle θQCD

is defined such that c1 = 0. Picking up the axion de-
pendent chiral rotation charge defined below the chiral
symmetry breaking scale Eq. (47), the chiral quarks
in the chiral perturbation theory are transforming as
qL → exp(iQAθ)qL, qR → exp(−iQAθ)qR where

QA =
1

2

M−1

TrM−1
, M−1 = diag.(

1

mu
,

1

md
). (50)

The derivative interactions of axion is obtained in this
way [167, 215, Kaplan (1985), Georgi, Kaplan, Randall
(1986)].

For the KSVZ axion, we have c1 = c2 = 0 and c3 = 1,
and the coefficient of the gluon anomaly term is (a/Fa)+
θQCD. Hence, redefining the axion as a + FaθQCD, we
obtain3

KSVZ axion (c1 = 0, c2 = 0) :

c̄1 = 1
2c3 = 1

2 ,

c̄2 = c2 + c3 = 1.

(51)

Here, c̄2 must be split according to the flavor singlet con-
dition to c̄u

2 + c̄d
2, (47) or (50).

For the DFSZ and PQWW axions, c1 = 0, c2 ̸= 0 and
c3 = 0. If a non-vanishing θQCD is introduced here, we
have, using the reparametrization invariance (21), c′1 =
−c2/2, c′2 = 0, and c′3 = c2. Then, the coefficient of
the gluon anomaly term is c2(a/fS) + θQCD, and hence
redefining axion as a + (fS/c2)θQCD and going back to
the c̄3 = 0 basis, we obtain for one family

DFSZ and PQWW axions :

c̄1 = 1
2 (−c2 + c̄2),

c̄2 ̸= 0, c̄3 = 0.

(52)

Again, c′3 must be split according to the flavor singlet
condition to c̄u

2 + c̄d
2 according to the anomaly matching

condition, Eq. (47).

Integrating out the heavy σ field and heavy quark
fields, the massless (at this level) degree a = Faθ which
appears from the phase of the singlet field σ = (⟨σ⟩ +
ρ√
2
)eiθ appears in the effective low energy Lagrangian.

If there are multiple SM singlets Si carrying PQ charges

3 The sign convention is stated below.
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I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a

challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general
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by considering the weak interactions alone without the
determinental interaction, but the conditions of the fla-
vor singlet, chirality flipping (L↔R) and CP violating
effects do not occur at one loop level. In the SM with
the Kobayashi-Maskawa CP violation, Ref. [153, Ellis,
Gaillard (1979)] shows that a finite correction occurs at
the fourth order, O(α2), leading to a very small NEDM,
but infinite corrections occur from O(α7). These can
give rise to a linear term of π. In the SM, the pioneering
calculation with axion has been performed in chiral per-
turbation theory to obtain θ ≤ 10−17 [167, 168, Georgi,
Kaplan, Randall (1986), Georgi, Randall (1986)]. The es-
timated θ however is far below the current experimental
limit of 10−11.

C. Axion couplings

The axion interactions are given in Eq. (19) which
are depicted in Fig. 10 where we have not drawn aWW̃
and aZZ̃ diagrams which are orthogonal to the aγγ̃. The
diagrams of Fig. 10 are complete for the low energy axion
phenomenology, where the suppression factor, 1/Fa, by
the axion decay constant is explicitly shown.
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are anomalous.

1. Axion hadron coupling

When we discuss axion–hadron interactions, which are
the relevant ones for low energy laboratory experiments
and physics at the core of supernovae, we must integrate
out gluon fields. Technically, it is achieved by using the
reparametrization invariance to remove the c3θGG̃ cou-
pling. If we keep the c3 coupling, we must consider the
axion–gluon–gluon interactions also, which is hard to be
treated accurately with its face value but must be the
same as the one in the c3 = 0 basis. In this way, the
quark interactions are changed from the original value as

c1 → c̄1 = c1 + 1
2c3

c2 → c̄2 = c2 + c3

c3 → c̄3 = c3 − c3 = 0.

(49)

In the barred notation, there exist only c̄1 and c̄2.

We will discuss one family without separating c1,2

into cu,d
1,2 first for an illustration, and then we will dis-

cuss the cases with cu,d
1,2 and write down formulae for

three families. Let us define the initial parameters c1, c2

and c3 together with the definition of the vacuum an-
gle θ0 ≡ θQCD. In principle, the initial vacuum angle
can be a free parameter. Here, the vacuum angle θQCD

is defined such that c1 = 0. Picking up the axion de-
pendent chiral rotation charge defined below the chiral
symmetry breaking scale Eq. (47), the chiral quarks
in the chiral perturbation theory are transforming as
qL → exp(iQAθ)qL, qR → exp(−iQAθ)qR where

QA =
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TrM−1
, M−1 = diag.(
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mu
,
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). (50)

The derivative interactions of axion is obtained in this
way [167, 215, Kaplan (1985), Georgi, Kaplan, Randall
(1986)].

For the KSVZ axion, we have c1 = c2 = 0 and c3 = 1,
and the coefficient of the gluon anomaly term is (a/Fa)+
θQCD. Hence, redefining the axion as a + FaθQCD, we
obtain3
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2c3 = 1

2 ,

c̄2 = c2 + c3 = 1.

(51)

Here, c̄2 must be split according to the flavor singlet con-
dition to c̄u

2 + c̄d
2, (47) or (50).

For the DFSZ and PQWW axions, c1 = 0, c2 ̸= 0 and
c3 = 0. If a non-vanishing θQCD is introduced here, we
have, using the reparametrization invariance (21), c′1 =
−c2/2, c′2 = 0, and c′3 = c2. Then, the coefficient of
the gluon anomaly term is c2(a/fS) + θQCD, and hence
redefining axion as a + (fS/c2)θQCD and going back to
the c̄3 = 0 basis, we obtain for one family

DFSZ and PQWW axions :

c̄1 = 1
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(52)

Again, c′3 must be split according to the flavor singlet
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2 according to the anomaly matching

condition, Eq. (47).

Integrating out the heavy σ field and heavy quark
fields, the massless (at this level) degree a = Faθ which
appears from the phase of the singlet field σ = (⟨σ⟩ +
ρ√
2
)eiθ appears in the effective low energy Lagrangian.

If there are multiple SM singlets Si carrying PQ charges
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I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a

challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general
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by considering the weak interactions alone without the
determinental interaction, but the conditions of the fla-
vor singlet, chirality flipping (L↔R) and CP violating
effects do not occur at one loop level. In the SM with
the Kobayashi-Maskawa CP violation, Ref. [153, Ellis,
Gaillard (1979)] shows that a finite correction occurs at
the fourth order, O(α2), leading to a very small NEDM,
but infinite corrections occur from O(α7). These can
give rise to a linear term of π. In the SM, the pioneering
calculation with axion has been performed in chiral per-
turbation theory to obtain θ ≤ 10−17 [167, 168, Georgi,
Kaplan, Randall (1986), Georgi, Randall (1986)]. The es-
timated θ however is far below the current experimental
limit of 10−11.

C. Axion couplings

The axion interactions are given in Eq. (19) which
are depicted in Fig. 10 where we have not drawn aWW̃
and aZZ̃ diagrams which are orthogonal to the aγγ̃. The
diagrams of Fig. 10 are complete for the low energy axion
phenomenology, where the suppression factor, 1/Fa, by
the axion decay constant is explicitly shown.
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1. Axion hadron coupling

When we discuss axion–hadron interactions, which are
the relevant ones for low energy laboratory experiments
and physics at the core of supernovae, we must integrate
out gluon fields. Technically, it is achieved by using the
reparametrization invariance to remove the c3θGG̃ cou-
pling. If we keep the c3 coupling, we must consider the
axion–gluon–gluon interactions also, which is hard to be
treated accurately with its face value but must be the
same as the one in the c3 = 0 basis. In this way, the
quark interactions are changed from the original value as

c1 → c̄1 = c1 + 1
2c3

c2 → c̄2 = c2 + c3

c3 → c̄3 = c3 − c3 = 0.

(49)

In the barred notation, there exist only c̄1 and c̄2.

We will discuss one family without separating c1,2

into cu,d
1,2 first for an illustration, and then we will dis-

cuss the cases with cu,d
1,2 and write down formulae for

three families. Let us define the initial parameters c1, c2

and c3 together with the definition of the vacuum an-
gle θ0 ≡ θQCD. In principle, the initial vacuum angle
can be a free parameter. Here, the vacuum angle θQCD

is defined such that c1 = 0. Picking up the axion de-
pendent chiral rotation charge defined below the chiral
symmetry breaking scale Eq. (47), the chiral quarks
in the chiral perturbation theory are transforming as
qL → exp(iQAθ)qL, qR → exp(−iQAθ)qR where

QA =
1
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M−1

TrM−1
, M−1 = diag.(

1

mu
,
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). (50)

The derivative interactions of axion is obtained in this
way [167, 215, Kaplan (1985), Georgi, Kaplan, Randall
(1986)].

For the KSVZ axion, we have c1 = c2 = 0 and c3 = 1,
and the coefficient of the gluon anomaly term is (a/Fa)+
θQCD. Hence, redefining the axion as a + FaθQCD, we
obtain3

KSVZ axion (c1 = 0, c2 = 0) :

c̄1 = 1
2c3 = 1

2 ,

c̄2 = c2 + c3 = 1.

(51)

Here, c̄2 must be split according to the flavor singlet con-
dition to c̄u

2 + c̄d
2, (47) or (50).

For the DFSZ and PQWW axions, c1 = 0, c2 ̸= 0 and
c3 = 0. If a non-vanishing θQCD is introduced here, we
have, using the reparametrization invariance (21), c′1 =
−c2/2, c′2 = 0, and c′3 = c2. Then, the coefficient of
the gluon anomaly term is c2(a/fS) + θQCD, and hence
redefining axion as a + (fS/c2)θQCD and going back to
the c̄3 = 0 basis, we obtain for one family

DFSZ and PQWW axions :

c̄1 = 1
2 (−c2 + c̄2),

c̄2 ̸= 0, c̄3 = 0.

(52)

Again, c′3 must be split according to the flavor singlet
condition to c̄u

2 + c̄d
2 according to the anomaly matching

condition, Eq. (47).

Integrating out the heavy σ field and heavy quark
fields, the massless (at this level) degree a = Faθ which
appears from the phase of the singlet field σ = (⟨σ⟩ +
ρ√
2
)eiθ appears in the effective low energy Lagrangian.

If there are multiple SM singlets Si carrying PQ charges

3 The sign convention is stated below.
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A major goal of axion searches is to reach inside the parameter space region of realistic axion
models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it
would be desirable to specify them in terms of precise phenomenological requirements. We consider
hadronic axion models and classify the representations RQ of the new heavy quarks Q. By requiring
that i) the Q are su�ciently short lived to avoid issues with long lived strongly interacting relics,
ii) no Landau poles are induced below the Planck scale, fifteen cases are selected, which define a
phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-
photon coupling about twice (four times) stronger than commonly assumed. Allowing for more than
one RQ, stronger couplings, as well as complete axion-photon decoupling, become possible.
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k (1)

ma ' m⇡
f⇡
fa

' 6 meV
109 GeV

fa
(2)

1

fa
(3)

I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional
rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a

challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current
must have a color anomaly and, although not re-
quired for solving the strong CP problem, in general

- the lighter the axion, the more weakly interacting
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