Dark Matter

Bhaskar Dutta

Texas A&M University

November 15, 2016

Questions

Some Outstanding Issues

1. Dark Matter content (Ω_{DM} is 27%)

- 2. Electroweak Scale
- **3.** Baryon Content (Ω_b is 5%)
- 4. Rapid Expansion of the Early Universe
- **5. Neutrino Mass**

٠

Presentation Outline

What have we learnt so far?

> LHC, Direct and Indirect Detection Experiments, Planck Data

Origin of DM

Thermal, Non-thermal, Non-standard cosmology

Expectations

> Dark Matter at the LHC

Concluding Insights

LHC

Most models predict: 1-3 TeV (colored particle masses) So far: No colored particle up to <u>1.6 TeV</u>

Non-colored SUSY particles: 100 GeV to 1-2 TeV (Major role in the DM content of the Universe) <u>Weak LHC bound for non-colored particles</u> hole in searches!

Trouble in Models with very tight correlation between colored and non-colored particles , e.g., minimal SUGRA/CMSSM

LHC + Direct Detection + Indirect Detection+Planck → quite constraining

Direct Detection Experiments

Status of New physics/SUSY in the direct detection experiments:

LUX: No signal for Low or High DM mass

- Astrophysical and nuclear matrix element uncertainties
- No signal: some particle physics models are ruled out

Neutrino floor: A serious concern for the DM experiments

Neutrinos arise from astrophysical sources

Neutrino Floor

1. Can we cut through it?

Study the nuclear recoil spectra

It is possible to detect some operators quickly compared to the other operators, e.g., $\bar{\chi}\chi\bar{q}q$ vs $\bar{\chi}\chi\bar{q}\gamma^5 q$ vs $\bar{\chi}\gamma^5\chi\bar{q}\gamma^5 q$

2. Can we determine the neutrino background from other experiments?

CEvNS experiments: COHERENT, CENNS; CONNIE (reactor), TEXONO(reactor), MINER (reactor: Texas A&M University) etc. S. Wagner's talk 6

Indirect Detection: Fermi

Fermi Collaboration: arXiv:1503.02641

γ : Future

Indirect Detection

Excess of positrons has been found by both AMS, PAMELA and Fermi

Dark Matter Mass: More than 100 GeV Theory Models predictions: The excess will fall off Pulsar can produce this excess

Latest result from Planck

Z

Zone favorisée par des expérience de détection du rayonnement cosmique dans le cadre d'une interprétation matière noire de leur excès de signal

http://public.planck.fr/images/resultats/2014-matierenoire/plot_constraints_planck2014.jpg

Probing Dark Matter

DM content (CMB) + overlapping region:

Thermal history, particle physics models, astrophysics

Dark Matter: Thermal

$Y = \frac{n}{s} = \frac{n}{g_*T^3}$ **Boltzmann equation** Y $\frac{dn_{DM}}{dt} + 3Hn_{DM} = \left\langle \sigma v \right\rangle_{eq} [n_{DM}^2 - n_{DM,eq}^2]$ 0.001 0 0001 10 $n_{DM,eq} = g_*(z)(\frac{mT}{2\pi})^{3/2} e^{-\frac{m}{T}}$ Increasing $<\sigma_{A}v>$ 10-8 10-9 $\Gamma_{eq} = n_{eq} \langle \sigma v \rangle_{eq}$ Interaction rate, Comoving $\frac{x}{Y_{eq}}\frac{dY}{dx} = -\frac{\Gamma_{eq}}{H}\left[\frac{Y^2}{Y_{eq}^2} - 1\right]$ 10-13 10-14 10-15 10-18 Y_x^{eq} 10-18 x = m/T, $H = T^2/M_{pl}$ 10-19 10-20 $\frac{\Gamma_{eq}}{H} >> 1, \ Y \to Y_{eq}$ 10 100 1000 **Solution:** $n_{DM} \cong \left(\frac{4\pi^3 G_N g_*(z)}{45}\right)^{1/2} \frac{T_0^3 g_{*s}(0)}{m g_{*s}(Z_f)} \frac{1}{\int_0^{Z_f} \langle \sigma v \rangle dz}$ $\frac{\Gamma_{eq}}{H} \ll 1, \ Y \rightarrow const$ $Z_f = \frac{KT_f}{m_{DM}}$ $T_f = \frac{m_{DM}}{20}$: Freeze-out temp

13

Dark Matter: Thermal

Freeze-Out: Hubble expansion dominates over the interaction rate Dark Matter content:

$$\Omega_{\rm DM} = \frac{m_{\rm DM} n_{\rm DM}}{\rho_c} \sim \frac{1}{\langle \sigma \mathbf{v} \rangle} \qquad \rho_c = \frac{3H_0^2}{8\pi G_N}$$

freeze out
$$\rightarrow$$
 $T_f \sim \frac{m_{DM}}{20}$

$$\Rightarrow \langle \sigma \mathbf{v} \rangle = 3 \times 10^{-26} \frac{cm^3}{s}$$
Assuming: $\langle \sigma \mathbf{v} \rangle_f \sim \frac{\alpha_{\chi}^2}{m_{\chi}^2}$

 α_{χ} ~O(10⁻²) with m_{{\chi}} ~ O(100) GeV leads to the correct relic abundance

Y becomes constant for **T**>**T**_f

Y~10⁻¹¹ for m_{χ} ~100 GeV to satisfy the DM content

DM particle + DM Particle \rightarrow SM particles

Annihilation Cross-section Rate: $< \sigma_{ann} v >$

f: SM particles; h, H, A: various Higgs, : \tilde{f} SUSY particle Note: All the particles in the diagram are colorless

>We need $\langle \sigma v \rangle = 3 \times 10^{-26} \frac{cm^3}{c}$ to satisfy thermal DM requirement

Suitable DM Candidate: Weakly Interacting Massive Particle (WIMP)

Typical in Physics beyond the SM (LSP, LKP, ...)

Most Common: Neutralino (SUSY Models) smaller annihilation cross-section

Neutralino: Mixture of Wino, Higgsino and Bino

Larger annihilation^t cross-section

Larger/Smaller Annihilation → non-thermal DM/non-standard cosmology

Status of Thermal DM

Thermal equilibrium above T_f is an assumption.

History of the Universe between the BBN and inflation is unknown

Non-standard thermal history at is generic in some explicit UVcompletions of the SM.Acharya, Kumar, Bobkov, Kane, Shao'08Acharya, Kane, Watson, Kumar'09Allahverdi, Cicoli, Dutta, Sinha,'13

DM content will be different in non-standard thermal histories (i.e., if there is entropy production at $T < T_f$).

Barrow'82, Kamionkowski, Turner'90

DM will be a strong probe of the thermal history after it is discovered and a model is established.

DM content: also needs to consider the DM annihilation.

Non-Thermal DM

Large entropy dilutes the thermal abundance:

$$\Omega_{th} \approx \Omega \left(\frac{T_r}{T_f}\right)^3 \quad \Rightarrow \text{ small unless } <\sigma_{ann} v > \text{ is small.}$$

Moduli decay into dark matter and the correct dark matter content can arise from the decay products:

1.
$$\Omega = 0.27 \times \left(\frac{3 \times 10^{-26} \, cm^3 \, / \, s}{\langle \sigma v \rangle (\frac{T_f}{T_r})} \right) \Rightarrow \langle \sigma v \rangle = 3 \times 10^{-26} \, (\frac{T_f}{T_r}) \, cm^3 \, / \, s$$

→ Larger annihilation cross-section is needed since $T_f > T_r$

2. Abundance of Decay products (Y_{ϕ}) is small enough, i.e., annihilation is not important any more

Benefit of Non-Thermal DM

For $T_r < T_f$, larger annihilation cross-section $\langle \sigma_{ann} v \rangle_f = \langle \sigma_{ann} v \rangle_f^{th} \frac{T_f}{T_r}$ is needed for $\Omega \rightarrow 27\%$

For T_r << T_f, Yield Y_φ = $\frac{3T_r}{4m_{\phi}}$; Y_{DM} = Y_φ BR_{φ→DM} is small ~10⁻¹⁰ DM will be produced without any need of annihilation [Note: For m_{DM}~10 GeV, Y_φ is needed to be ~10⁻¹⁰ to satisfy the DM content]

Outcome:

- Large and small annihilation cross-section from models are okay
- > We may not need any annihilation

Since $\phi \rightarrow DM$ + other particles, abundance (for T_r << T_f): 10⁻¹⁰ > The Baryon and the DM abundance are correlated ~ 10⁻¹⁰

Allahverdi, Dutta, Sinha'11

DM and Baryon Abundance

 $\frac{\Omega_b}{\Omega_{DM}} = \frac{5}{27}$ Baryon abundance: $\Omega_b = \frac{m_b n_b}{\rho_c}$ ρ_c =critical density
DM abundance: $\Omega_{DM} = \frac{m_{DM} n_{DM}}{\rho_c}$ n = number density

If $m_{DM} \sim \text{few GeV} \rightarrow n_b \sim n_{DM} (\text{since } m_b = 1 \text{ GeV})$

Why baryon and DM abundances are similar?

Predictive model has been constructed

Allahverdi, Dutta, Mohapatra, Sinha, '13

Dark Matter & Baryogenesis from ϕ

$$W_{extra} = \lambda_{i\alpha\beta} N_{\beta} u_i^c X_{\alpha} + \lambda_{ij\alpha} d_i^c d_j^c \overline{X}_{\alpha} + M_{\alpha} X_{\alpha} \overline{X}_{\alpha} + \frac{M_{\beta}}{2} N_{\beta} N_{\beta}$$

N : SM singlet; X, \overline{X} : Color triplet, hypercharge $\pm 4/3$

N fermions and *X* scalars and their SUSY partners → R parity conserved

 \tilde{N} : can be the DM candidate (spin 0) with small mass and large spin-independent cross-section

[Allahverdi, Dutta, Mohapatra, Sinha'13]

Baryogenesis from decays of X, \overline{X} or N

Non-Thermal CMSSM

Aparicio, Cicoli, Dutta, Muia, Quevedo'16

□ CMSSM/mSUGRA parameters: m_0 , $m_{1/2}$, A_0 , $tan\beta$, sign of $\mu + T_R$ □ We consider the case with large $\langle \sigma v \rangle_{ann}$

This scenario can be realized in the context of LVS

DM from Early Matter domination

DM abundance from early matter domination (moduli)

DM candidate can be Neutralino

Kamionkowski and M. S. Turner,'90; Giudice, Kolb, Riotto, '01; Gelmini, Gondolo'06

□ If the dark matter kinetically decouples prior to reheating

 \rightarrow enhances small-scale perturbations which significantly increase the abundance of microhalos

□ The boost to the annihilation rate from the microhalos is sufficient to be observed at Fermi Erickcek'15

 10^{4}

 10^{3}

Erickcek, Sigurdson,'11

T_{RH} [GeV]

Non-Standard Cosmology

Correlation between DM and DE

$$\mathbf{S} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \, R - \int d^4x \sqrt{-g} \left[\frac{1}{2} (\partial\phi)^2 + V(\phi) \right] - \int d^4x \sqrt{-\tilde{g}} \, \mathcal{L}_{DM}(\tilde{g}_{\mu\nu})$$

$$\tilde{g}_{\mu\nu} = C(\phi)g_{\mu\nu} + D(\phi)\partial_{\mu}\phi\partial_{\nu}\phi$$
,
Bekenstein'93
Koivisto, Wills, Zavala, '13

A new H ($\equiv \frac{\dot{a}}{a}$) appears which is different compared to the standard cosmology Catena, Fornengo, Masiero, Pietroni, Rosati'04 Lahanas, Nanopoulos, Mavromatos, 06 Meehan, Whittingham, '15

The Boltzmann equation also gets modified

→ Modify $<\sigma_{ann}v>$ to satisfy the DM content

Changing H before BBN

Initial conditions: $\varphi = 0.2, \varphi' = -1.180$

Dutta, Jiminez, Zavala, to appear

So Far...

Measurement of DM annihilation cross-section is crucial Large : multicomponent/non-thermal/non-standard cosmology; Small: Non-thermal/early matter domination/non-standard

>LHC: Determine the model then calculate $< \sigma_{ann} v >$

>DM annihilation from galaxy, extragalactic sources

Annihilation into photons: Fermi, CTA, HAWC

Annihilation into neutrinos: IceCube

Dark Matter at the LHC

Annihilation of lightest neutralinos → quarks, leptons etc. At the LHC: proton + proton → DM particles

DM Annihilation diagrams: mostly non-colored particles e.g., sleptons, staus, charginos, neutralinos, etc.

How do we produce these non-colored particles and the DM particle at the LHC? Can we measure the annihilation cross-section $< \sigma_{ann} v >$?

- 1. Cascade decays of squarks and gluinos
- 2. Monojet Searches
- 3. Via stop squark
- 4. Vector Boson fusion

1. Via Cascade decays at the LHC

30

Via Cascade decays at the LHC

0.4

0.3

Arnowitt, Dutta, Kamon, Gurrola, Krislock, Toback: PRL 100 (2008) 231802

Mirage Mediation Model

Particle	Mass	Stat.	
\tilde{t}	690	± 6	
${ ilde b}$	1002	± 126	@ 200 fb ⁻¹
$ ilde{ au}$	717	\pm 10	
\tilde{q}	1133	-132, +167	1

 $\Omega h^2 = 0.23 \pm 0.13.$

Dutta, Kamon, Krislock, Sinha, Wang: Phys.Rev. D85 (2012) 115007

$\begin{array}{c} \mathbf{S} \\ \mathbf{G} \\ 0.2 \\ 0.1 \\ $										
	$\overline{\mathcal{L}\left(fb^{-1}\right) }$	$m_{1/2}$ (GeV)	m_H (GeV)	m_0 (GeV)	A_0 (GeV)	tanβ	μ (GeV)	$\Omega_{\tilde{\chi}_1^0}h^2$		
	1000	500 ± 3	727 ± 10	366 ± 26	3 ± 34	39.5 ± 3.8	321 ± 25	$0.094^{+0.107}_{-0.038}$		
	100	500 ± 9	727 ± 13	367 ± 57	0 ± 73	39.5 ± 4.6	331 ± 48	$0.088\substack{+0.168\\-0.072}$		
	0	110	1.15	1 50	1.00	115	1.10	± 0.175		

Non Universal Higgs Model

100 fb

2. Monojet Searches

Dark Matter production → missing energy Jets from a gluon radiated from quarks→ Monojet plusMET (similarly monophoton+MET)

Effective Operators, e.g.,

10⁻⁴⁵

10-46

10-47

10

LUX 201

m_{DM} [GeV]

10²

3. DM via Stop at the LHC

Utilize Stop decay modes to search charginos, sleptons, neutralinos

Ex. 1 χ_1^0 is mostly bino and χ_2^0 is wino

 ${ ilde t_1} ~
ightarrow~ t+{ ilde \chi_1^0}$

Stop can identified via fully hadronic or 1 lepton plus multijet final states

[Bai, Cheng, Gallichio, Gu, '12;Han, Katz, Krohn, Reece, 13;Plehn, Spannowsky, Takeuchi, JHEP '13;Kaplan, Rehermann, Stolarski, JHEP '12; Dutta, Kamon, Kolev, Sinha, Wang,'12]

Ex. 2 $\chi_{1,2}^0$ are mostly Higgsino

Topness variable to identify stops

Grasser, Shelton, '13

Ex. 3 χ_1^0 is mostly Bino-Higgsino → Correct relic density

For lighter sleptons

$$\begin{split} \tilde{t}_1 &\to t + \tilde{\chi}_2^0 \to t + l + \tilde{l}^* \to t + l + \bar{l} + \tilde{\chi}_1^0, \\ \tilde{t}_1 &\to b + \tilde{\chi}_1^{\pm} \to t + \nu + \tilde{l} \to t + l + \nu + \tilde{\chi}_1^0 \\ \tilde{t}_1 &\to t + \tilde{\chi}_1^0 \end{split}$$

2 jets+ 2 leptons (OSSF-OSDF) +missing energy

Dutta, Kamon, Kolev,Wang, Wu, '13

→ Existence and type of DM particle, hard to calculate the DM content

4. DM at the LHC Via VBF

- > LHC has a blind spot for productions of non-colored particle
- The W boson (colorless) coming out of high energy protons can produce colorless particles Vector Boson Fusion(VBF)
- > Special search strategy needed to extract the signal
- New way of understanding DM or new physics sector at the LHC

DM Via W at the LHC

 $pp \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} jj$

DM Content via VBF

Simultaneous fit of the observed rate, shape of missing energy distribution:

Conclusion

- History of the Universe between the BBN and inflation is unknown → the origin of the DM content may not be due to thermal and/or standard cosmology.
- Non-thermal/non-standard cosmology scenarios can accommodate both large and small annihilation crosssections and can allow us to understand the baryon-DM coincidence puzzle
- DM ideas have constraints from LHC, Planck, direct and indirect detection constraints
- ➤ Measurements of <σ_{ann}v> is crucial LHC and Indirect detections → identify DM model
- Understanding the Neutrino floor is crucial to utilize the DM₃₇ direct detection results in the upcoming days