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Introduction

Black Holes are a very interesting solution of General Relativity.
Different solutions as Schwarzschild, Reissner-Nördstrum, Kerr-Newman, BTZ,
etc. Also we have BH evaporation. “Hawking radiation”

Cosmic censorship. Minimal Mass and Charge for viable Reissner-Nordström
BH. Penrose, 1969 & 1973

Asymptotic Safety. Weinberg’s idea of a way to incorporate
Quantum Mechanics in GR studying the existence of a nGFP of the effective
theory. Weinberg, 1996. arXiv: 9702027

Two options for improving GR. At the level of effective action and improving
the solutions (this work).
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Classical RN Black Holes

Some considerations about classical RN BH

Metric :

ds2 = −fcl(r)dt2 +
dr2

fcl(r)
+ r2dΩ2 ,

where

fcl(r) = 1− 2G0M0

r
+
G0Q

2
0

α0r2
− 1

3
Λ0r

2 . (1)
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where

fcl(r) = 1− 2G0M0

r
+
G0Q

2
0

α0r2
− 1

3
Λ0r

2 . (2)

Kretschmann scalar:

RµνρσR
µνρσ =

48G2
0M

2
0

r6
+

56G2
0Q

4
0

α2
0r

8
− 96G2

0M0Q
2
0

α0r7
+

8

3
Λ2

0 (3)
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Classical RN Black Holes

Possible Horizons: f(r) = 0

r1,2 = ρ1/2 ∓
[

3

2Λ0
− ρ− 3G0M0

2Λ0
ρ−1/2

]1/2

, (4)

r3,4 = − ρ1/2 ∓
[

3

2Λ0
− ρ+

3G0M0

2Λ0
ρ−1/2

]1/2

, (5)

where

ρ =
1

2Λ0

[
1− R

−1/3R2

2α0
− R

1/3

2α0

]
, R = R1 +

√
R1

2 −R2
3, (6)

R1 = α3
0 + 12G0Q

2
0α

2
0Λ0 − 18G2

0M
2
0α

3
0Λ0,

R2 = α2
0 − 4G0Q

2
0α0Λ0. (7)
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Classical RN Black Holes

Critical Mass: R1
2 −R2

3 ≥ 0
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Classical RN Black Holes

Critical Mass: R1
2 −R2

3 ≥ 0

⇒ 81G3
0α

3
0Λ0M

4
0 − (9G0α

3
0 + 108G2

0Q
2
0α

2
0Λ0)M2

0

+24G0Q
4
0α0Λ0 + 16G2

0Q
6
0Λ2

0 + 9Q2
0α

2
0 = 0,
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Classical RN Black Holes

Critical Mass: R1
2 −R2

3 ≥ 0

⇒ 81G3
0α

3
0Λ0M

4
0 − (9G0α

3
0 + 108G2

0Q
2
0α

2
0Λ0)M2

0

+24G0Q
4
0α0Λ0 + 16G2

0Q
6
0Λ2

0 + 9Q2
0α

2
0 = 0,

This leads to

M1 =
1

3G0

√√√√6G0Q2
0

α0
+

1

2Λ0

[
1−

(
1− 4G0Q2

0Λ0

α0

)3/2
]

(8)

M2 =
1

3G0

√√√√6G0Q2
0

α0
+

1

2Λ0

[
1 +

(
1− 4G0Q2

0Λ0

α0

)3/2
]
. (9)
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Classical RN Black Holes
AdS BH (Λ0 < 0): One critical mass, M1, and two horizons, r1,2.

dS BH (Λ0 > 0): Two critical masses and three horizons, r1,2,4.

(c) (d)

Parameters chosen G0 = 1, Q0 = 1, α0 = 1/137,Λ0 = ±10−5, then M1 ≈ 11,7, M2 ≈ 105,6.
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Classical RN Black Holes

Cosmological horizon:

rc =

√
3

2Λ0

1 +

√
1 +

4G0Q2
0Λ0

3α0

1/2

= r4|M=0

and in the limit Q0 → 0, one obtain

rc →
√

3

Λ0

⇒ dS-Schwarszchild cosmological horizon!
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Classical RN Black Holes• Cosmic Censorship:
Equation (8) is the condition for “dressed”singularities. In the limit Λ0 → 0 we
have

M1 →
Q0√
G0α0

= McritRN

In the Q0 → 0 limit, M2 is the the Nariai BH M2crit = 1/3G0

√
Λ0.
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

The effective action used is Daum, Harst & Reuter, 2010. Harst & Reuter, 2011.

Γk = Γgrav
k + Γ“QED”

k

=
1

16πGk

∫
d4x
√
g[−R+ 2Λk]−

1

4αk

∫
d4x
√
gFµνF

µν , (10)

where the three coupling constants are, the Newton coupling Gk, the cosmological
coupling Λk, and the electromagnetic coupling αk (in terms of the fine structure
“constant”)
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

The scale dependence of those couplings is indicated by the subindex k which
has energy dimension one. The dimensionless couplings are obtained from the
dimensionfull couplings by multiplying with the corresponding power of k

gk = Gkk
2, λk = Λkk

−2, αk = αk . (11)

The evolution of the dimensionless couplings (11) is governed by the renormalization
group equations.

k∂kgk = βg(gk, λk) , k∂kλk = βλ(gk, λk) , k∂kαk = βα(gk, αk) . (12)
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

The beta functions are given by

βλ(g, λ) = (ηN − 2)λ+
1

2π
g
[
10Φ1

2(−2λ)− 8Φ1
2(0)− 5Φ̃1

2(0)
]
, (13)

βg(g, λ) = (2 + ηN)g , (14)

βα(g, α) ≡
(
Ah2(α)− 6

π
Φ1

1(0)g

)
α , (15)

and the anomalous dimension of the gravitation coupling is

ηN(g, λ) =
gB1(λ)

1− gB2(λ)
,
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

The Bi are functions of the adimensional constant λ and are given by

B1(λ) ≡ 1

3π

[
5Φ1

1(−2λ)− 18Φ2
2(−2λ)− 4Φ1

1(0)− 6Φ2
2(0)

]
,

B2(λ) ≡ − 1

6π

[
5Φ̃1

1(−2λ)− 18Φ̃2
2(−2λ)

]
.

and finally, the functions Φi have been calculated in the “optimised cutoff”scheme
D. Litim, 2001 & 2004

Φpn(w) =
1

Γ(n+ 1)

1

(1 + w)p
, Φ̃pn(w) =

1

Γ(n+ 2)

1

(1 + w)p
. (16)
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

The RG equations (12) can be solved numerically. One observes, the existence of a
non trivial fixed point at which βg = 0, βλ = 0 and βα = 0.

g∗ = 0,707 , λ∗ = 0,193 , α∗ = 6,365 (17)

The dimensionfull coupling constants can be approximated at the vicinity of this
fixed point

ĺım
k→∞

Gk = g∗k
−2, ĺım

k→∞
Λk = λ∗k

2, ĺım
k→∞

αk = α∗ . (18)
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

(e) (f)
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

It is sometimes convenient to work with analytic approximations of the renomaliza-
tion group flow

g(k) =
G0k

2

1 + G0
g∗

(k2 − k2
0)
, (19)

λ(k) =
Λ0

k2
+ λ∗

(
1− k

2
0

k2

)
+
g∗λ∗
G0k2

log

(
1 + G0

g∗
k2

0

1 + G0
g∗
k2

)
, (20)
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Renormalization Group Flows in Quantum Einstein Gravity
Coupled to QED

α(k)−1 =

[
1 +

G0

g∗
(k2 − k2

0)

]3Φg∗
π
[

1

α0
− g∗
α∗G0k2

0
2F1

(
1, 1, 1 +

3Φg∗
π

; 1− g∗
G0k2

0

)]
+

g∗
α∗G0k2

[
1 +

G0

g∗
(k2 − k2

0)

]
2F1

(
1, 1, 1 +

3Φg∗
π

;
G0k

2
0 − g∗

G0k2

)
. (21)

those approximated functions have the advantage that they have a well defined
infra-red limit k → k0

g(k)→ G0k
2
0, λ(k)→ Λ0/k

2
0, α(k)→ α0 .
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Scale Setting for Classical Backgrounds

In the renormalization program, the coupling constants in action are promoted to
scale dependent quantities

G→ Gk, Λ→ Λk and α→ αk. (22)

Now, the important part of this procedure is to relate the scale k with physical
quantities. Our choice is to relate the energy scale with distance by

k ∝ 1/d.

We can re-obtain the usual running coupling of QED

α−1(k) = −A ln(k) + c,

where c = −Aγψ(3Φg∗/π), γ is the Euler constant, and ψ is the Digamma function
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Scale Setting for Classical Backgrounds

For our system the relation of scale and distance is of the form

k(r, α0, Q0, G0,M0,Λ0) = k(r) ≡ ξ

d(P (r), α0, Q0, G0,M0,Λ0)
, (23)

where the parameter ξ controls the scale dependence, and d(r) it is the proper
radial distance up to a point P in a radial curve Cr

d(P (r)) =

∫
Cr

√
|ds2| . (24)
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Scale Setting for Classical Backgrounds

For our system the relation of scale and distance is of the form

k(r, α0, Q0, G0,M0,Λ0) = k(r) ≡ ξ

d(P (r), α0, Q0, G0,M0,Λ0)
, (25)

where the parameter ξ controls the scale dependence, and d(r) it is the proper
radial distance up to a point P in a radial curve Cr

d(P (r)) =

∫
Cr

√
|ds2| . (26)

For the black hole metric (2), this length scale reads

d(r) =

∫ r

0

dr√
|f(r)|

=

∫ r

0

dr√
|1− 2G0M0

r +
G0Q

2
0

α0r2 − 1
3Λ0r2|

. (27)
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Scale Setting for Classical Backgrounds

(g) (h)

Dependence of the scale k(r)/ξ according to (25) for G0 = 1, Q0 = 1, α0 = 1/137,Λ0 = ±10−5.

AdS line element with masses M0={5, 11.7, 50, 105.6} (blue, yellow, green, and red).
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Scale Setting for Classical Backgrounds

We can compute an analytical solution for the pure Reissner-Nordström proper
distance, setting Λ0 = 0 in (2),

dRN(r) = r
√
fRN(r) +G0M log

∣∣∣r√fRN(r) + r −G0M
∣∣∣

+G0M log

∣∣∣∣∣Q
√
G0

α0

(
1− M

Q0

√
α0G0

)∣∣∣∣∣−Q
√
G0

α0
, (28)

with fRN(r) = fcl(r)|Λ0=0. This solution only applies for masses different from the
critical mass .
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RG-Improved Black Hole Solutions in the UV

An analytical expression for k(r) not be obtained, unless for very extreme
regimes, such as very small radial coordinates, where one might dare to make an
expansion in r

d(r) ' 1

2

√
α0

G0Q2
0

r2

[
1 +

2

3

M0α
2
0

Q2
0

r +O(r2)

]
. (29)

The cosmological constant Λ0 does not appear in this expansion until order r6.
With this expression for d(r), at first order in r, one can get an analytic result for
k(r) given by

k(r) ' 2Q0

√
G0

α0
r−2ξ. (30)
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RG-Improved Black Hole Solutions in the UV

Taking the UV limit, k →∞, one must use (18) in

fk(r) = 1− 2g(k)M0

k2r
+

g(k)Q2
0

α(k)k2r2
− 1

3
λ(k)k2r2 , (31)

obtaining

f∗(r) = 1− 2g∗M0

k2r
+

g∗Q
2
0

α∗k2r2
− 1

3
(λ∗k

2)r2. (32)

Using the analytic expression for k(r), one gets

f∗(r) = 1− α0g∗M0

2G0ξ2Q2
0

r3 +
α0g∗

4α∗G0ξ2
r2 − 4G0λ∗ξ

2Q2
0

3α0r2
. (33)
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RG-Improved Black Hole Solutions in the UV

With this new function, in order to get an analytic expression for ξ, one can
calculate a new d(r), given by

d∗(r) '
√

3

4

1

Q0ξ

√
α0

G0λ∗
r2. (34)

Comparing the first order improvement (29) and the second order improvement
(34), one finds that both length scales agree, indicating a (UV) convergence of the
improvements if one chooses

ξ2 = ξ2
sc ≡

3

4λ∗
. (35)

This UV-stable choice is similar to the choice which was in previous studies called
“self consistent”. Koch & Saueressig, 2014.
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RG-Improved Black Hole Solutions in the UV

and now we have the “self-consistent” improved function

f∗,sc(r) = 1− 2α0g∗λ∗M0r
3

3G0Q2
0

+
α0g∗λ∗r

2

3α∗G0
− G0Q

2
0

α0r2
. (36)

One can compute the square of the Riemman-tensor of the UV RG-Improved
solution (36), obtaining

R∗,scµνρσR
µνρσ
∗,sc =

8α2
0g

2
∗λ

2
∗

3α2
∗G

2
0

+
304α2

0g
2
∗λ

2
∗M

2
0r

2

9G2
0Q

4
0

−160α2
0g

2
∗λ

2
∗M0r

9α∗G2
0Q

2
0

+
64g∗λ∗M0

3r3
+

56G2
0Q

4
0

α2
0r

8
. (37)

where one can see that the spatial singularity at the origin r = 0 remains.
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Improved Black Hole Solution in the IR and Global Behavior:
Improved line element

In this improvement scheme one promotes the scale independent couplings, that
are present in the classical solution, to the scale dependent quantities known from
the RG flow (13)-(15)

fk(r) = 1− 2g(k)M0

k2r
+

g(k)Q2
0

α(k)k2r2
− 1

3
λ(k)k2r2 . (38)

The arbitrary scale k becomes a physically relevant quantity due to the scale setting
(25) shown in figure . With this scale setting one obtains the RG-improved metric
function f(r) shown in figure .
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Improved Black Hole Solution in the IR and Global Behavior:
Improved line element

(i) (j)

Improved metric function for the self-consistent value ξsc and with mass values M0={12, 24, 36, 48} (blue,

yellow, green, red), and G0 = 1, Q0 = 1, α0 = 1/137,Λ0 = ±10−5, k0 = 0,01. The dashed lines are the

classical metric function for each case, plotted for comparison.
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Improved Black Hole Solution in the IR and Global Behavior:
Improved line element

Improved metric function for the pure Reissner-Nördstrum solution, with the same parameters and color codings

of previous plots
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Improved Black Hole Solution in the IR and Global Behavior:
Improved line element

Improved f(r) for AdS case, setting the mass parameter M0 = 12 and G0 = 1, Q0 = 1, α0 = 1/137, k0 =

0,01. We use different ξ values, ξ = {0,5, 1,5, 2,5, 4, 11} (blue, yellow, green, red, purple) and the dashed line

correspond to the classical solution for comparison with the same parameters.
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Alternative improvement schemes

In the case of improved black hole solution an alternative choice for the renormali-
zation scale k would be for example in terms of the proper time. The length scale
associated is

k(r) =
ξ

τ(r)
= ξ

(∫ r

0

dr′ (f(r)− f(r′))
−1/2

)−1

. (39)

One can compute this scale numerically and compare it with the corresponding pro-
per distance, numerical or analytical (28). This is done for the Reissner Nordström
case

τRN(r) =

∫ r

0

dr′
(

2G0M

r′
− G0Q

2

α0r′2
− 2G0M

r
+
G0Q

2

α0r2

)−1/2

. (40)
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Alternative improvement schemes

(k) (l)

Left: Comparison of the proper time (blue) and numerical distance (orange) and analytical distance (green) scale

settings, using G0 = 1, Q0 = 1, α0 = 1/137 and a mass value M 'Mcrit|Λ0=0.

Right: f(r) improved functions for the two scales settings. We use the same values for the constants and ξsc.
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Alternative improvement schemes

It is interesting to compare the behavior of the metric functions obtained from
the improving solutions approach fimpRN(r) and the metric function that solves

exactly the simplified version of the gap equations f̃(r). Koch & Rioseco, 2015.

One finds that both quantum improved descriptions have a well defined classical
limit

ĺım
ξ→0

fimpRN(r) = fRN(r), (41)

ĺım
ε→0

f̃(r) = fRN(r).

A comparison of both functions is shown in next figure for

f̃(r) =
r4ε2α0 + 4εr3α0 + 4(1−G0M0ε)r

2α0 − 8rG0M0α0 + 4G0Q
2
0

4r2(εr + 1)2α0
(42)
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Alternative improvement schemes

Comparison of f̃(r) (dashed), fimpRN(r) (line) and fRN(r) (point) for the Reissner-Nordstöm black hole, using

ξsc, ε = 0,01, G0 = 1, Q0 = 1, α0 = 1/137, k0 = 0,01 and M = 15

C. Gonzalez Diaz. PUC XI SILAFAE 2016 17-Nov-2016



Modified horizon structure and cosmic censorship

Improved dS Horizons. Orange and blue lines corresponds to external and internal horizons, respectively. Also we have

purple lines, corresponding to internal horizons for ξ = ξsc/3. The dotted line is for the classical horizon. The values

used are G0 = 1, Q0 = 1, α0 = 1/137, k0 = 0,01, and ξsc. For AdS black holes we have the same behavior.
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Classical and improved temperature

For describing the evaporation process for the classical BH one uses the relation

T =
1

4π
f ′(r)|r=r2 . (43)
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Classical and improved temperature

Improved temperature as function of the mass parameter, evaluated for AdS (blue), dS (red) and Λ0 = 0 (green)

cases. Also, in full lines we have the classical temperature in r2. The values chosen are G0 = 1, Q0 = 1, α0 =

1/137, k0 = 0,01.
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Modified mass and charge

It is instructive to study how one would interpret the improved black hole solution
is one would not be aware of a possible scale dependence of the couplings.

In this case one would perform experiments at some radial scale r and assu-
ming constant couplings G0, Λ0, and α0.

The result of such an experiment (say the study of sections of geodesics) would
then be fitted by the “charges” of the black hole.

For astrophysical distances, those charges would be basically the mass M = M(r)
and the electrical charge Q2 = Q2(r), whereas the cosmological term with its
corresponding “charge” L = L(r) is largely irrelevant at a range of smaller radii.
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Modified mass and charge

Taking equation (38) and redefining terms in sense of fitting the metric function

fk(r) = 1− 2G0M(r)

r
+
G0Q

2(r)

α0r2
− 1

3
Λ0L(r)r2 , (44)

with

M(r) ≡ M0g(k)

G0k2(r)
, (45)

and

Q(r) ≡ Q2
0α0

G0

g(k)

α(k)k2(r)
. (46)
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Modified mass and charge

(m) (n)

Mass and charge as variables dependent of r for AdS case. Left: The curves are for mass values

M0 = {12, 38, 58} and fixed charge Q0 = 1. Right: Different charge values Q0 = {1, 5, 10} with mass values

M0 = {20, 100, 250}, respectively. The other parameters ξsc, G0 = 1, α0 = 1/137, k0 = 0,01. The dS case

is basically identical since differences only would occur at extremely large radii.
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Summary

We studied some classical aspects of the charged BH solution with Λ 6= 0.

Effects of the FRGE are applied and we analyzed how that solution changed.

The scale dependence modified structural properties of the classical solution
such as horizons.

We found a zero order transition in temperature for the (A)dS charged BH at
the critical mass M1.

It is important to note that the improved solution agrees with Penrose’s cosmic
censorship hypothesis, for any election of parameters.
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