Recent results from LHCb

A.Hicheur (UFRJ, Brazil) On behalf of the LHCb collaboration SILAFAE 2016, Guatemala November 14-18, 2016

laboratório de partículas elementares

Universidade Federal do Rio de Janeiro

Outline

- Physics program
- LHCb experiment
- Highlights of recent results
 - Mostly from Run I data, some analyses include ongoing Run II data
- Prospects
- Conclusion

LHCb physics scope

- Main scope
 - Use heavy flavours (b,c) decays to probe New Physics indirectly
 - Deviations from Standard Model on cleanly-predicted observables
 - Constraints on New Physics parameters even if no detected sign
 - Precise measurements on weak couplings of quarks, "CKM physics"
 - Understand better EW CP violation, as an input to the cosmological puzzle
- Other topics are considered
 - Heavy Quarks production at pp collisions
 - Forward EW and QCD physics
 - Search for exotics
 - Heavy ion physics

3

CKM picture: where we start...

Weak interaction couples quarks through elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix Weak eigenstates are different from mass eigenstates = CKM matrix is not diagonal and may relate quarks of different generation

~1 ~0.2 ~ 0.04 ~ 0.004-0.008

Elements forming sides (and angles) of 3 independent "unitarity" triangles, of which only a couple are of interest for heavy-flavour decays

...and where we stand

Most interesting relation:

$$V_{ud}V_{ub}^{*}+V_{cd}V_{cb}^{*}+V_{td}V_{tb}^{*}=0$$

Sides usually measured in semileptonic decays and oscillation frequency, angles in CP asymmetries

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

CKM picture verified but with higher precision, discrepancies could still arise, e.g. need for precise measurement of γ angle

Winter 14

LHCb data (2011+2012) - Run I

10¹¹ protons per bunch colliding at 7 (2011) and 8 (2012) TeV

Luminosity at IP8 (LHCb): 2-4 x 10³² cm⁻² s⁻¹ About 1500 charged particles produced at each pp collision

 $\sigma(b\overline{b}) \sim 75 \ \mu b @ 7 \ TeV*$ in LHCb acceptance ~ 40% B+, 40% B0, ~ 10% Bs Remaining b baryons, Bc, etc...

* J. High Energy Phys.08 (2013) 117

LHCb data (2015+2016) - ongoing Run II

Bunch colliding at 13 TeV

 σ (bb) ~ 165 µb @ 13 TeV* in LHCb acceptance About 2.3 times the value @ 7-8 TeV

- Fits use ratios of allowed/suppressed BF + asymmetries
- For multibody D decays, dilution factor due to $\delta_{\scriptscriptstyle D}$ variation across phase space
- Compare to γ from loop diagrams: mismatch? BSM particles in the loop?
- Combine LHCb analyses to make averages

γ from B \rightarrow DK, different techniques

- $f_D = CP$ eigenstates, $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$, $Ks\pi^0$
 - Gronau, London, Wyler (GLW) 1991
- $f_D = flavour states: D^0 \rightarrow K^+\pi^-, K^-\pi^+$
 - Atwood, Dunietz, Soni (ADS) 1997
- $f_D =$ multibody final states (variation of δ_D over phase space)
 - Ksh⁺h⁻ Giri, Grossman, Soffer, Zupan 2003; Poluektov 2004 (GGSZ-P)
 - $K^{\pm}\pi^{-/+}\pi^{+}\pi^{-}$, multibody ADS
 - KsK $\pm \pi^{-/+}$, GLS
- Some variants involving neutrals, B^o and Bs

Observables: charge asymmetries and BF ratios of suppressed/favoured D decays (applies for self-tagging decays)

γ from trees

Case of $D^0 \rightarrow K - \pi +$ (Cabibbo Allowed), $D^0 \rightarrow K + \pi$ - (double Cabibbo Suppressed)

$$R_{h}^{\pm} = \frac{\Gamma(B^{\pm} \rightarrow D_{DCS} h^{\pm})}{\Gamma(B^{\pm} \rightarrow D_{CA} h^{\pm})} = \frac{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D} \pm \gamma)}{1 + (r_{B}r_{D})^{2} + 2r_{B}r_{D}\cos(\delta_{B} - \delta_{D} \pm \gamma)}$$

For multibody decays, must take into account the interference term between the two amplitudes in the D meson phase space, using a coherence factor κ_{D} PRD68 (2003) 033003, arXiv:hep-ph/0304085

$$2r_{B}r_{D}\cos(\delta_{B}+\delta_{D}\pm\gamma) \rightarrow 2r_{B}r_{D}\kappa_{D}\cos(\delta_{B}+\delta_{D}\pm\gamma)$$

γ from B \rightarrow DK in LHCb

Many channels under study in LHCb

- Using either CP, flavour, or multibody final states of D

B decay	D decay	Method	Ref.	Status sir combinatio	nce last n [28]	
$B^+ \to D h^+$	$D \to h^+ h^-$	GLW/ADS	[44]	Updated to	$3{\rm fb}^{-1}$	
$B^+ \to D h^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[44]	Updated to	$ m 0.3fb^{-1}$	
$B^+ \to D h^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[45]	New		
$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	[46]	As before		
$B^+ \to DK^+$	$D \to K^0_{\rm s} K^- \pi^+$	GLS	[47]	As before		
$B^+ \to D h^+ \pi^- \pi^+$	$D \to h^+ h^-$	GLW/ADS	[48]	New		
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[49]	As before		
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[50]	New	arXiv:16	11.0307
$B^0 \to DK^{*0}$	$D \to K^0_{\rm s} \pi^+ \pi^-$	GGSZ	[51]	New		
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[52]	As before		12

γ combination of results

LHCb-PAPER-2016-032, arXiv:1611.03076 submitted to JHEP

NEW

average

Combination of analyses :

- $B^+ \rightarrow DK^+$
 - PLB760 (2016) 117, PRD91 (2015) 112014, JHEP 10 (2014) 097, PLB733 (2014) 36
- $B^0 \rightarrow DK^{*0}$
 - PRD90 (2014) 112002, JHEP 08 (2016) 137
- $B^0 \rightarrow DK\pi$
 - PRD93 (2016) 112018
- B⁺→DK⁺ππ
 - PRD92 (2015) 112005,
- Time dependent B_s → D_sK⁺
 - JHEP 11 (2014) 060

Rare (loop) decays

- Weak/Electromagnetic box diagrams $b \rightarrow s(d) \ell^+ \ell^-$
- Observation of $B^0 \rightarrow K^+K^-$

New physics can intervene in the loops/boxes Can be probed through the analysis of the dynamics of the decays Or testing, e.g., lepton universality $b \rightarrow s e^+e^-/b \rightarrow s\mu^+\mu^-$

Dynamics for $B^0 \rightarrow K^{*0}\mu^+\mu^-$, $B_{a} \rightarrow \phi\mu^+\mu^-$

 $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}\cos\theta_l\,\mathrm{d}\cos\theta_K\,\mathrm{d}\Phi} = \frac{9}{32\pi} \left[\frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K\right]$ $\mathrm{d}^{3}\Gamma$ $+\frac{1}{4}(1-F_{\rm L})\sin^2\theta_K\cos 2\theta_l - F_{\rm L}\cos^2\theta_K\cos 2\theta_l$ $q^2 = \mu^+ \mu^-$ invariant $+ S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\Phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \Phi$ mass squared Formula slightly different between $+A_5 \sin 2\theta_K \sin \theta_l \cos \Phi + A_6 \sin^2 \theta_K \cos \theta_l$ $+\overline{S_7}\sin 2\theta_K\sin \theta_l\sin \Phi + \overline{A_8}\sin 2\theta_K\sin 2\theta_l\sin \Phi$ K* (self-tagging) and ϕ **F_L: fraction of longitudinal** $+ A_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\Phi$]. polarization of K*/ø $A_{f} \sim A_{FR} = forward-backward$ asymmetry of the dimuon system θκ A_z = S_z in the case of K* BO They depend on $B \rightarrow K^*/\phi$ form factors and Wilson Coefficients of π 16 the OPE

$B \rightarrow X \mu^+ \mu^-$ results

CP violation in baryon decays

arXiv:1609.05216 Submitted to Nature

CPV seen in B and K decays, never in baryons Search for direct CPV in $\Lambda_{h} \rightarrow p\pi$ hh decays

$\Lambda_{_{\rm b}} \rightarrow p\pi hh$ signals and CP

arXiv:1609.05216 Submitted to Nature

First observation

Overall 3.3 σ CP violation found for $\Lambda_{b} \rightarrow p\pi\pi\pi$ First evidence of CP violation in baryon decays No CP violation for $\Lambda_{b} \rightarrow p\pi KK$

Semileptonics

Theoretically well-understood in the SM Decays to light leptons well-measured by B factories

- a) Not as good for τ lepton
- b) Good way to extract V_{ab} CKM element

a) Any new (charged) intermediate boson/mediator would couples preferentially to τ : LHCb studied B⁰ \rightarrow D^{*+} τ ν / B⁰ \rightarrow D^{*+} μ ν (LHCb-PAPER-2015-025, arXiv:1506.08614)

b) Use of
$$b \rightarrow u \mu v$$
 to improve $|V_{ub}|$ (relative uncertainty still ~ 12-13%) + solve the tension between measurements from exclusive $B \rightarrow \pi \mu v$ and inclusive $B \rightarrow X_u \mu v$:

USE OF Λ_b → ρμν (LHCb-PAPER-2015-013) arXiv:1504.01568)

 $\overline{\mathbf{B}^{0}} \longrightarrow \mathbf{D}^{*+} \tau^{-} \overline{\mathbf{v}}_{\tau}$ Measure: $R(D^{*}) \equiv \frac{\mathcal{B}(\overline{B}^{0} \to D^{*+} \tau^{-} \overline{v}_{\tau})}{\mathcal{B}(\overline{B}^{0} \to D^{*+} \mu^{-} \overline{v}_{\mu})}$ Using τ decay: $\tau^{-} \to \mu^{-} \overline{v}_{\mu} v_{\tau}$

= 0.252 in SM (PRD 85094025 (2012)), with very good precision

LHCb-PAPER-2015-025, arXiv:1506.08614

R(D*) result

$R(D^*) = 0.336 \pm 0.027 \pm 0.030$

Future results to test lepton universality : $R(J/\Psi)$ from B_c , $R(\Lambda_c)$ from Λ_b , $R(D_s^{(*)})$ from B_s

Direct CPV measurement in $D^0 \rightarrow K^+K^-$

arXiv:1610.09476 LHCb-PAPER-2016-035 Submitted to PLB

The flavour (D⁰ or \overline{D}^0) is kinematically determined in the chain D^{*+} \rightarrow D⁰ π^+ / D^{*-} \rightarrow $\overline{D}^0\pi^-$

$$A_{CP}(D^0 \to K^- K^+) \equiv \frac{\Gamma(D^0 \to K^- K^+) - \Gamma(\overline{D}{}^0 \to K^- K^+)}{\Gamma(D^0 \to K^- K^+) + \Gamma(\overline{D}{}^0 \to K^- K^+)}$$

In practice :

Production asymmetry

$$A_{CP}(D^0 \to K^- K^+) = A_{\text{raw}}(D^0 \to K^- K^+) - A_P(D^{*+}) - A_D(\pi_s^+)$$

 $A_P(D^{*+}) + A_D(\pi_s^+)$ is measured using the raw asymmetries of the decays

Slow pion detection asymmetry

 $D^0 \to K^- \pi^+$ $D^+ \to K^- \pi^+ \pi^+$ $D^+ \to \overline{K}{}^0 \pi^+$

and $A_D(\overline{K}^0)$ which is known to be small and under control

Fit to $\delta m \equiv m(h^+h^-\pi_s^+) - m(h^+h^-)$ $h = K, \pi$

Direct CPV measurement in $D^0 \rightarrow K^+K^-$

Combined LHCb value : $A_{CP}^{\text{comb}}(K^-K^+) = (0.04 \pm 0.12 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$ Most precise single-experiment measurement

No CP violation in the charm sector !

Bc physics

- Unique hadron with two heavy quarks $Bc^+ = bc$
- Decays through either charm or beauty quark
 - Decays could include lighter B mesons !
- Spectroscopy not very well known
 - About 10 measurements (8 upper limits!)
 - Limitation due to the lack of knowledge of the production $pp(\rightarrow b) \rightarrow Bc$ cross-section : measure products of branching fractions and cross-section ratios

LHCb pioneering work in Bc physics

Measured values of physical observables	Data
$\frac{Br(B_c \to J/\psi \pi^+ \pi^- \pi^+)}{Br(B_c \to J/\psi \pi^+)} = 2.41 \pm 0.30 \pm 0.33$	0.8 fb^{-1}
$R_{c/u} \equiv \frac{\sigma(B_c)Br(B_c \rightarrow J/\psi\pi^+)}{\sigma(B_u)Br(B_u \rightarrow J/\psi K^+)} = 0.68\pm0.02\%$	2 fb ⁻¹
$\frac{Br(B_c \to \psi(2S)\pi^+)}{Br(B_c \to J/\psi\pi^+)} = 0.250 \pm 0.068 \pm 0.014$	$1.0 {\rm ~fb^{-1}}$
$R_{D_s/\pi} \equiv \frac{Br(B_c \to J/\psi D_s^+)}{Br(B_c \to J/\psi \pi^+)} = 2.90 \pm 0.57 \pm 0.24$	3 fb^{-1}
$R_{D_s^*/D_s} \equiv \frac{Br(B_c \to J/\psi D_s^{*+})}{Br(B_c \to J/\psi D_s^{+})} = 2.37 \pm 0.56 \pm 0.10$	3 fb^{-1}
$f_{\pm\pm} \equiv \frac{Br_{\pm\pm}(B_c \to J/\psi D_s^{*+})}{Br(B_c \to J/\psi D_s^{*+})} = (52 \pm 20)\%$	3 fb^{-1}
$\frac{Br(B_c \to J/\psi K^+)}{Br(B_c \to J/\psi \pi^+)} = 0.079 \pm 0.007 \pm 0.003$	3 fb ⁻¹
$\frac{\sigma(B_c)}{\sigma(B_s)} \times Br(B_c \to B_s \pi^+) = 2.37^{+0.37}_{-0.35} \cdot 10^{-3}$	3 fb^{-1}
$\frac{Br(B_c \to J/\psi K^+ K^- \pi^+)}{Br(B_c \to J/\psi \pi^+)} = 0.53 \pm 0.10 \pm 0.05$	3 fb^{-1}

JHEP 09 (2016) 153

And many ongoing results and studies...

Fit Regions definition

Signal in annihilation region

Simultaneous fit to bins of Decision Tree Classifier

ncreasing

purity

~ 21±10 signal events With a global significance of 2.4σ

Hint of annihilation signal ?

Adding Run II data will help to confirm

 $R_{\text{an},KK\pi} = (8.0^{+4.4}_{-3.8}(\text{stat}) \pm 0.6(\text{syst})) \times 10^{-8}$

Compare to SM-based conservative range :

 $\sim [0.1, 1.7] \times 10^{-8}$

Observation of Bc $\rightarrow \chi_{_{CO}}(\rightarrow KK)\pi$

m(KKπ) m(KK) 50 LHCb 45 LHCb 40 40 F 35 30 30 25 20 20 10 21±6 signal events Candidates/ $(0.020 \text{ GeV}/c^2)$ Candidates/(0.017 GeV/c²) Increasing 10 With a global significance of 4σ purity Strong evidence Total $B_c^+ \rightarrow \chi_{c0} \pi^+$ Comb. $B_c^+ \rightarrow (K^- \pi^+) K^+$ 2 E $m(K^+K^-\pi^+) [GeV/c^2]$ 6.2 $m(K^+K^-)$ [GeV/ c^2]

 $R_{\chi_{c0}\pi} = (9.8^{+3.4}_{-3.0}(\text{stat}) \pm 0.8(\text{syst})) \times 10^{-6}$

Similar to (7.0±0.3)×10⁻⁶ for J/ $\Psi\pi$

Forward physics

32

Forward physics, resolving W+bb, W+cc, tt

LHCb-PAPER-2016-038 arXiv:1610.08142, submitted to PLB

Analysis done for 4 samples $W^{\pm}(\mu/e \nu) + j1 j2$ Main background : $Z(\mu\mu/ee) + j1 j2$

Results on W+bb, W+cc, tt

Signal	K	μ sample yields	$e\ {\rm sample}\ {\rm yields}$
$W^+\!+\!b\overline{b}$	$1.49_{-0.22}^{+0.23}$	$45.5_{-6.4}^{+6.9}$	$20.5^{+3.1}_{-2.9}$
$W^- + b\overline{b}$	$1.67\substack{+0.33 \\ -0.30}$	$28.7^{+5.6}_{-4.9}$	$12.1^{+2.3}_{-2.1}$
$W^+ + c\overline{c}$	$1.92\substack{+0.68\\-0.58}$	$12.8_{-3.9}^{+4.5}$	$5.7^{+2.0}_{-1.7}$
$W^-\!+\!c\overline{c}$	$1.58\substack{+0.87 \\ -0.73}$	$5.7^{+3.1}_{-2.6}$	$2.5^{+1.4}_{-1.2}$
$t\overline{t}$	$1.17_{-0.31}^{+0.35}$	$8.7^{+2.6}_{-2.3}~(\mu^+)$	$3.7^{+1.1}_{-1.0}~(e^+)$
		$8.3^{+2.5}_{-2.2}~(\mu^{-})$	$4.0^{+1.2}_{-1.1} \ (e^{-})$

Process	Expected [pb]	Observed [pb]	Significance
$W^+\!+\!b\overline{b}$	$0.081 \ {}^{+0.022}_{-0.013} \ {}^{+0.040}_{-0.018}$	$0.121 \ {}^{+0.019}_{-0.018} \ {}^{+0.029}_{-0.020}$	7.1σ
$W^- + b\overline{b}$	$0.056 \ {}^{+0.014}_{-0.010} \ {}^{+0.018}_{-0.013}$	$0.093 \ {}^{+0.018}_{-0.017} \ {}^{+0.023}_{-0.016}$	5.6σ
$W^+ + c\overline{c}$	$0.123 {}^{+0.034}_{-0.020} {}^{+0.060}_{-0.027}$	$0.24 \begin{array}{c} +0.08 \\ -0.07 \end{array} \begin{array}{c} +0.08 \\ -0.04 \end{array}$	4.7σ
$W^-\!+\!c\overline{c}$	$0.084 \ {}^{+0.021}_{-0.015} \ {}^{+0.027}_{-0.020}$	$0.133 {}^{+0.073}_{-0.062} {}^{+0.050}_{-0.022}$	2.5σ
$t\overline{t}$	$0.045 \ {}^{+0.008}_{-0.007} \ {}^{+0.012}_{-0.010}$	$0.05 \begin{array}{c} +0.02 \\ -0.01 \end{array} \begin{array}{c} +0.02 \\ -0.01 \end{array}$	4.9σ

Still compatible with NLO SM-based predictions

Upgrade

- Planned during LS2 (2019-2020)
 - Prepare for acquisition of 50 fb⁻¹
- Detectors:
 - full upgrade of the tracking system
 - new RICH (Particle ID) detectors
 - Calorimeters and muon system: new electronics, more shielding, etc...
- Triggering: full software trigger
 - This removes the limitation of the L0 Hardware trigger (1 MHz)

Summary

- A big variety of results
 - A lot of recent results not shown : e.g., Bs $\rightarrow \phi \gamma$ polarisation (arXiv:1609.02032), $\Sigma \rightarrow p \mu \mu$ (LHCb-CONF-2016-013), etc...
 - Pushing the SM further in the corners and hunt for intervention of NP: e.g., persisting discrepancies in some observables of rare decays
 - Forward physics and Heavy Ion physics programs progressing as well
- Run II data taking is going on efficiently, 2 fb⁻¹ of data already recorded with $\sigma(b\overline{b})(13 \text{ TeV}) > 2 \times \sigma(b\overline{b})(7-8 \text{ TeV})$
 - A lot of news should come with the analysis of the full Run I + 2015 + 2016 sample
- Preparation for upgrade is well advanced and most of the R&D phases are now achieved