
On SUSY Breaking and 
Cosmology in IIB String 

Compactifications 
F. Quevedo  

ICTP/Cambridge 
SILAFAE 

Antigua Guatemala  
November 2016 

 
R. Kallosh, FQ +  A. Uranga arXiv:1507.07556 
I. Garcia-Etxebarria, FQ + R. Valandro  arXiv:1512.06926  
L. Aparicio, FQ + R. Valandro arXiv:1511.08105  
M.Cicoli, K. Dutta, A. Maharana, FQ arXiv:1604.08512 
L. Aparicio, M. Cicoli,  B Dutta,  F. Muia + FQ arXiv:1607.00004  
 
 



Approaches to BSM 

Simplicity 

Follow your nose 

Top-down 

Bottom-up 



Outline 

•  General introduction 
•  Moduli Stabilisation + de Sitter + SUSY 

breaking 
•  Two concrete scenarios (KKLT, LVS) 
•  Cosmology (inflation scenarios + non-standard 

postinflationary cosmology) 
•  Phenomenology (SUSY breaking scenarios)  



On SUSY Breaking and 
Moduli Stabilisation 



Why SUSY? 

•  SUSY does not solve the cc problem 
•  SUSY may not solve the hierarchy problem 
•  SUSY B,L + flavour problem 
•  SUSY complicates cosmology (cosmological 

moduli problem, gravitino problem) 
•  Best dark matter candidates not neutralino? 
•  Unification: other options 
•  Stability of Higgs potential? No tachyons? 



SUSY Challenges for String 
Scenarios 

•  Explicit N=1 Compactification 

•  Concrete SUSY breaking mechanism 

•  Moduli Stabilisation (small cc)                                 
(+ avoid CMP (plus gravitino+ dark radiation excess,etc!)) 

•  Chiral visible sector 

•  Computable soft terms 



String Scenarios 

•  IIB (+F-theory) 
    
      KKLT 
      LVS 

 
•  IIA 
 
•  Heterotic    

•  G2 manifolds 

Moduli 
Stabilisation 



IIB MODULI   STABILISATION 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) 

+ String Dilaton: S 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: z 
(Complex structure 
moduli) + Dilaton S 



GKP	Overview	

1.  Fluxes: GVW  
     
 Fix CS moduli: z and dilaton: S (but 

runaway in T directions?) 
 
2.  Warped throats 

1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:
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1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:
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where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.
As we know, in the presence of fluxes the 10D metric is of the form:
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where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
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Figure 1: The standard model on a T-shirt. The first row has the Einstein-Hilbert term for

gravity (� = 2) and the kinetic and topological terms for the gauge fields (� = 1) describing the

electromagnetic, weak and strong interactions. The second line has the kinetic energy for the

matter fields: quarks and leptons � = 1/2 as well as their (Yukawa) couplings to the Higgs field

H (� = 0). The third line is the kinetic and potential energy for the Higgs field.

G3 = F3 � iSH3,

Z
F3 = 2⇡M,

Z
H3 = �2⇡K

In order to search for the new physics that will overcome the SM we have to explore experi-

mentally all possibilities, increasing the energy, intensity and reach to the highest possible limits,

the history of science tells us we are bound to find something. For theorists we can follow several

directions:

1. Simplicity. Add the simplest possible component to the SM (e.g. one extra neutral fermion

or boson to be dark matter and/or drive inflation, etc.) and contrast with observations.

This is a way to start at least to eliminate the simplest cases and start building up a more

meaningful theory.

2. Follow your nose. Follow aesthetic arguments (usually subjective) as a guideline (e.g. add

extra symmetries o dimensions to address dark energy, dark matter or the flavour structure

of the SM, consider mechanisms such as the see-saw mechanism to explain smallness of

neutrino masses, etc.).

3. Bottom-up. Use any experimental hint in order to introduce new particles that fit data and

then use as a guide towards model building (e.g. attempts to explain some astrophysical

events from fundamental physics such as a concrete dark matter candidate, attempts to

explain some deviations form the SM at colliders data, etc.).
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KKLT	Overview	

•  Nonperturba,ve	effects:	

•  An,	D3	brane	(SUSY	breaking+upli?)	

1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:
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where the first term comes from the DBI action and the second term from the Chern-Simons
action
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for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.
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SUSY AdS Vacua: DW=0 



LARGE Volume Scenario 

Fluxes determine superpotential W0 (U,S)         (GKP 2002) 

Perturbative corrections to K:  

Nonperturbative contributions to W: 

Exponentially large volume for weak coupling  
(SUSY broken by Fluxes, AdS) BBCQ, CQS 2005 

June 21, 2015 13:36 World Scientific Review Volume - 9in x 6in QuevedoPerspectivesSP

6 Fernando Quevedo

this e↵ect is captured in the EFT by the flux superpotential W0(U, S)d.The
perturbative superpotential cannot depend on the T fields since their imag-
inary components are axion-like fields having a perturbative Peccei-Quinn
shift symmetry: ImTi ! ImTi + ci and the holomorphicity of W would
then not allow dependence on the full superfield T

i

. Therefore they can
only appear in W through non-perturbative e↵ects.

W
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in which the A
i

may be functions of other moduli or even matter fields.
Combining this with the flux superpotential gives the fullW = W0+W

np

which combined with the corrections to K are able to fix all moduli. This
has been done in practice for only a handful of models.

The scalar potential derived from the general N = 1 supergravity ex-
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⇠ @K/@T are the (misnamed) field-dependent Fayet-Iliopoulos
terms, only present for abelian groups, � a matter field transforming under
the corresponding gauge group and T are the corresponding generators
(charges in the case of a U(1)). Gauge indices suppressed.

Concentrating on the moduli dependence, the typical shape of the mod-
uli scalar potential takes the form:
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Here ⌧ = ReT represents a typical T modulus, with V the overall vol-

ume (function of the T fields) and the potential is meant to be seen as
an expansion in large volume, where the e↵ective field theory treatment
dMore explicitly the flux superpotential takes the form

R
G3 ^⌦ where G3 = H3 + iSF3

with H3, F3 the two 3-form field strengths of the two stringy 2-form potentials. Here ⌦

is the unique (3, 0) form that exists for every CY manifold. Expanding ⌦ in a basis of

three-forms generates a superpotential dependence on the U
a

fields.

the Kähler moduli, the Yukawa couplings and the µ-term can depend only on S and U at

the perturbative level with the T -moduli appearing only non-perturbatively. We discuss

this dependence in more detail in Sec. 3 and Appendix B.

As motivated in [33, 53], we assume the following form of the Kähler potential which

describes the regime for the visible sector near the singularity

K = −2 ln

(

V +
ξ̂

2

)

− ln(2s) + λSM

τ2SM
V + λb

b2

V +KdS +Kcs(U) +Kmatter , (2.5)

where ξ̂ ≡ ξs3/2, the λ’s are O(1) coefficients, Kcs(U) is the tree-level Kähler potential for

complex structure moduli and KdS encodes the dependence on the sector responsible for

obtaining a dS vacuum (see Sec. 2.3). The matter Kähler potential Kmatter is taken to be

Kmatter = K̃α(M,M )C
α
Cα + [Z(M,M )HuHd + h.c.] . (2.6)

We assume at this stage that the matter metric is flavour diagonal beyond the leading

order structure which was highlighted in [54].9 The only exception is that we allow for the

Higgs bilinear to appear in Kmatter which we parameterise with the function Z. Note that

K̃α is the matter metric for the visible sector which we will parameterise as [33]

K̃α =
fα(U,S)

V2/3

(

1− cs
ξ̂

V + K̃dS + cSMτ
p
SM + cbb

p

)

, p > 0 , (2.7)

where we have used K̃dS to parameterise the dependence on the dS mechanism (details will

be given in Sec. 3.2). The c’s are taken as constants for simplicity while p is taken to be

positive in order to have a well-behaved metric in the singular limit b, τSM → 0. As they

can in principle depend on U and S, we comment in due course on the influence on the

soft-terms of such a dependence. The appearance of the Higgs bilinear and its potential

parametrisation are discussed in Sec. 3.3.4 when we analyse the µ-term in this scenario.

In general the functions fα(U,S) could be non-universal. Such non-universality can have

interesting phenomenological implications (e.g. mass hierarchies among families of sfermion

masses needed for a realisation of natural SUSY). As we are interested in soft-terms arising

for D-branes at singularities, we take the gauge kinetic function to be

fa = δaS + κa TSM , (2.8)

where δa are universal constants for Zn singularities but can be non-universal for more

general singularities.

2.2 Moduli stabilisation

As outlined earlier in this section, we stabilise the moduli following the LVS procedure.

The complex structure moduli and the dilaton are fixed at tree-level by background fluxes

while the Kähler moduli are fixed using higher order corrections to the effective action [28].

9Subleading flavour off-diagonal entries which can in principle appear [55] are taken to be absent. This

is motivated by the appearance of additional anomalous U(1) symmetries in D-brane models, in particular

also in the context of del Pezzo singularities [41].
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Other de Sitter ‘Uplift’ 

•  From F/D terms, hidden matter CKKMQV 2013 

  T-branes (Cicoli, FQ, Valandro arXiv:1512.04558 ) 
 

•  From non-perturbative effects on 
hidden brane at singularities 

•  ... 

 

BCMQ 2011 



dS Kahler Moduli Stabilisation 

Vuplift = A/V a 
 
1<a<3 

Vuplift 



Relevant Scales 

String Scale 

Kaluza Klein Scale 

Gravitino mass 

Volume modulus mass 

Vacuum decay rates 

description of these vacua despite being non-supersymmetric. The dS minima are clearly

metastable and the decay rate goes like � ⇠ e�V3
. The probability to decay to an AdS

minimum is preferred over a dS as a ratio P
dS

/P
adS

⇠ e�V whereas its decay towards the

10D decompactification vacuum (V ! 1) is further suppressed P
dec

/P
dS

⇠ e�V2
. Clearly

the larger the volume the more stable the vacuum.

• Bounds on the volume. However the volume cannot be arbitrarily large since for values

V ⇠ 1030 the string scale becomes smaller than the TeV scale, also beyond V ⇠ 1015 the

gravitino mass (and usually soft terms) will be smaller than the TeV scale. Finally for

volumes V � 109 the volume modulus becomes lighter than 10 TeV which would lead to

the cosmological moduli problem (CMP). Smaller volumes 103 < V � 108 are consistent

and survive overclosing (with the larger volumes being the more stable from the previous

item) but still imply a special cosmological role for the volume modulus (or any lighter one

in particular cases). This modulus is the latest to decay and its decay would be the source

of reheating of the observable universe leading to interesting post-inflationary cosmology

(see for instance [18]).

• Inflation. The three terms in the second parentheses for V
F

hint at a concrete realisation

of inflation. Assuming the volume is already at its minimum value, the potential for ⌧ is

precisely of the form A�Be�x for large values of ⌧ which is one of the preferred inflationary

potentials for a canonically normalised inflaton field x. In order to achieve this concretely

at least three T
i

fields are required which is very generic in string compactifications. Loop

corrections may destabilise the flatness of the potential during inflation. A more elaborated

and stable under quantum corrections model of inflation has been proposed in which the

inflaton is a fibre modulus. For this scenario the spectral index and tensor to scalar ratio

r ⇠ 10�3 falls just in the preferred Planck regime (see [16] for a recent overview). However,

if the recent results from BICEP are confirmed r ⇠ O(0.1) then these scenarios are ruled

out by experiment. An example on how string scenarios can be predictive and contrasted

with experiment. The string scenarios consistent with BICEP: N-flation, axion monodromy

and Wilson line inflation [17] can be embedded in the LVS. More work in this direction is

needed.

• Axions. There are plenty of axions in string compactifications, many can survive at low

energies but some do not. In LVS it is clear that the axion partners of the dilaton and

Kähler moduli stabilised by non-perturbative e↵ects acquire a mass of order the gravitino

mass. Other axions are eaten by anomalous U(1)s by the Stuckelberg mechanism. But

some survive at very low energies, in particular the axion partner of the volume modulus

is essentially massless after moduli stabilisation and may have some implications for late

time cosmology. In particular contributong to dark radiation. Also axions coming from
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Revisiting Anti D3 Brane 
Uplift 



Brane-An2brane	interac2on	
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With the first term giving the V2/3 factor that gives the uplift and the second term shows the
origin for the V2/3 factor on the Coulomb interaction term. Therefore what we were missing
before is the scaling of the C4 term in the action showing that there is also a V2/3 in the
Coulomb term.

2. This seems to be consistent with KKLMMT. Take KKLMMT equation C2:
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In order to match with the uplifting term we need to have '
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2
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Using r0/R = e

�↵ the only way for this to be consistent with the famous V�4/3 dependence
in the uplifting term is to change:
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In order to make contact with the supergravity field � we need to expand ' =< ' > +�'. Since
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All this seems consistent with a superpotential for the chiral field � / V1/3
' of the form.
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+ · · ·

�
. (1.17)

This would change the estimates for the bounds on the soft scalar masses by:
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which is OK for local sequestered case for which m0 ⇠ 1/V3/2 but it is border line for the ultra
local case in which m0 ⇠ 1/V2.

2

When we move the D3-brane outside the throat, the potential (3.11) is still valid, with
now r1 being the distance between the D3-brane and the anti-D3-branes measured with the
unwarped CY metric. If the D3-brane is at a generic point in the CY manifold, the distance
from the anti-D3-brane is r1 ⇠ V1/6`
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Figure 1. Cartoon description of the geometry and brane set-up

3.3 Supersymmetrising KKLMMT

Now we will attempt to capture the couplings of subsection 3.2 in terms of a supergravity
action with a nilpotent field. Following the recent work in which the standard KKLT uplift
was captured by the F-term coming from the nilpotent goldstino superfield [8]. We will
add to this the coupling of the antibrane field to the moving D3 brane. Let us consider the
simplest case of moduli stabilisation with all complex structure moduli and dilaton stabilised
by fluxes and concentrate on the Kahler moduli and matter fields. The effective field theory
at low energies for one Kahler modulus T with the volume determined by V ⇠ (T +T ⇤

)

3/2,
one matter field representing the position of a D3 brane and the corresponding anti-D3
brane superfield X. The Kahler potential:

K = �3 log (T + T ⇤ � �⇤��X⇤X) (3.14)

The superpotential can be written as:

W = W0(U, S) +W
np

(U, S, T ) + ⇢(U, S,�)X (3.15)
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we can see that the uplift term eKK�1
XX

⇤ |⇢0|2 can be written as:

V
up

= eKK�1
XX

⇤ |⇢0|2 = |⇢0|2
V2

V2/3

a+ bV2/3
(3.23)

Since b is a function of complex structure moduli it can compared with V2/3 depending on
the warping. If b ⌧ V�2/3 as for instance b ⇠ U4/3 ⇠ e4A then we recover the warped
KKLMMT uplift. If however volume dominates over warping, bV2/3 � a then we recover
the unwarped uplifting originally proposed in KKLT. Notice that for b ⇠ e4A equation 3.23
reproduces exactly the general result of 3.7 interpolating between KKLT and KKLMMT
uplift.

3.4 Stability of D-branes at singularities: Bounds on Soft Masses

Let us consider the situation in which the D3-brane is at a singularity of the CY three-fold.
At the singularity the D3-brane splits into a set of fractional branes with non-abelian gauge
groups and chiral fermions. This can accommodate the visible MSSM sector. If the moduli
are fixed in a non-supersymmetric vacuum, soft SUSY breaking terms are generated, giving
a mass to the field '̂ that could to stabilise it at zero. On the other hand the presence of
an anti-D3-brane generates a Coulomb attraction for the D3-branes. If this is too strong, it
can destabilize the location of the minimum. When this happens, the fractional D3-branes
can recombine into a normal D3 brane that will start rolling towards the anti-D3-brane. As
a result, the MSSM structure is destroyed. We now work out what are the bounds on the
solft masses such that this does not happen.

The '̂ dependent part of the potential is of order:

�V ('̂) =
e�8↵

V '̂M3
p

+m2
0|'̂|2 (3.24)

where we have assumed that the soft term mass is dominant on the quadratic negative part
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2
p

. The minimum of the potential (3.24) is at
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p

2m2
0V

(3.25)

Physically this non-zero vev for '̂ means that the D3-brane position is shifted from the
original position by �r = '̂`2

s

. If this value is greater than the typical string length scale
then it would mean that the presence of the antibrane substantially affects the physics of
the D3 brane system. Hence we need to impose �r ⌧ `

s

.
In order to have a de Sitter minimum, the term e�4↵/V4/3 has to be of the same

order as W 2
0 /V2 in KKLT and as 1/V3 in LVS. Implying that the warp factor is of order

respectively e�4↵ ⇠ W 2
0 /V2/3 and e�4↵ ⇠ 1/V5/3. When this happens, we have

�r ⇠ e�8↵M3
p
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s

=
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p
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2V1/2
`
s

=

8
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>>:
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2
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4
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M

2
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2
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1
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(3.26)
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Hence, �r ⌧ `
s

if 8
>><
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m
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p
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4
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V11/6 for KKLT

m

2
0

M

2
p
� 1

V23/6 for LVS
(3.27)

Under these conditions, it is also valid that m2
0 is leading with respect to the quadratic

term in (3.13), that we had assumed at the beginning of this section. For completeness we
also display them here:

8
>><
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m0 � W

2
0

V4/3Mp

⇠ m

2
3/2

MKK
for KKLT

m0 � W

2
0
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⇠ m

2
3/2

Mp
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(3.28)

Notice that most models of supersymmetry breaking coming from KKLT and LVS
satisfy the bounds. The only exception is the ultra-local case of references [19, 20] for
which the soft masses were precisely of order m0 ⇠ m2

3/2/Mp

which is a borderline case.

4 Soft Terms with one Kahler Modulus: KKLT

Supergravity effective field theories are described by three frunctions: a Kahler potential,
a superpotentail and a gauge kinetic function. The purpose of this first section is to show
that for the stringy inspired scenarios, this scalar potential has a a general form regardless
of the way one stabilizes the moduli. Let us first start with a theory KKLT like:

K = �2 log

�
(T + T ⇤

)� �¯�
�3/2 � log(S + S⇤

) (4.1)

and with
W = W

flux

+A e�aT (4.2)

if we compute the F-term scalar potential

V = V
F

= FnF
n

� 3m2
3/2 (4.3)

one sees that it can be written in the general form

V = V
KKLT

+

2

3

V
KKLT

|ˆ�|2 (4.4)

where ˆ� is the canonically normalized field � in eq. (4.1). The main assumption of KKLT
is that there is a supersymmetric minumun such that W0 ⌘ hW

flux

i << 1. That allows
to minimize the dilaton and complex structure moduli such that are much heavier than
the Kahler modulus. Hence, from the effective field theory we can simply integrate out
the dilaton and the complex structure moduli and focus on the Kahler stabilization. After
integarting them out the the leading terms of the expression for V

KKLT

are

V
KKLT

=

2 e�2a⌧aA2

s V4/3
+

2 e�2a⌧a2A2

3s V2/3
� 2 e�a⌧aA W0

s V4/3
(4.5)
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2 Nilpotent goldstino

Here we will collect some properties of the nilpotent goldstino superfield X. In broken super-
gravity effective field theory the goldstino is eaten by the gravitino realising the super-HIggs
effect and the effective field theory has been known for more than 30 years. However if this
breaking happens at very low energies compared with the Planck mass, the goldstino cou-
plings can be described directly as an independent field in terms of a non-linear realisation
of supersymmetry, as in the original Volkov-Akulov formalism.

Extracting this effective field theory is useful if the process of supersymmetry breaking
is not fully under control such as due to strongly coupled systems or in brane models in which
the presence of different configurations of branes can break supersymmetry, sometimes even
partial breaking, and it would be important to have control on the low energy effective
theory in which supersymmetry is non-linearly realised.Over the years there have been
several approaches to describe the low-energy couplings of the goldstino in terms of spurion
or constrained superfields. We will follow here the approach of describing the goldstino in
terms of a chiral superfield X that is further constrained to be nilpotent X2

= 0 with the
aim at describing the breaking of supersymmetry due to the presence of an anti D3 brane
in flux compactifications.

The couplings of a nilpotent chiral superfield can be described in terms of very simple
Kahler and superppotential as follows:

K = K0XX⇤ W = ⇢X +W0 (2.1)

where K0, ⇢,W0 may be functions of other low-energy fields. Higher powers of X are not
present in K and W due to the nilpotency condition. Furthermore this condition implies
that for a nilpotent superfield X with components X0, , F :

X = X0(y) +
p
2 (y)✓ + F (y)✓¯✓ (2.2)

With, as usual, yµ = xµ + i✓�µ¯✓. It is easy to see that the nilpotency constraint implies
that the scalar component of X is not a propagating field but it is given by [3]:

X0 =
  

2F
(2.3)

The effective field theory (EFT) of X reproduces the Volkov-Akulov action and has
been studied both in global and local supersymmetry. For the anti D3 brane in the KKLT
scenario, the representation in terms of X is very convenient since it allows the treatment of
the presence of the supersymmetry breaking driven by the anti brane in terms of standard
supergravity couplings of matter and moduli superfields to the nilpotent goldstino. The
fact that the scalar component of X is not a propagating field is very relevant: first it fits
well with the fact that the anti D3 brane is fixed at the tip of a warped throat and so it does
not have a modulus describing its motion, contrary to D3 branes. Second, in calculating the
scalar fields potential energy, there is no contribution for X0 and it is consistent to simply
set X0 = 0 when looking for vacuum configurations in the same way we set all fermions to
zero. This simplifies substantially the calculations.
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1 Introduction

Constrained superfields can play important roles in supersymmetric theories and have been
subject to intensive research during the past few years (see for instance [? ]). The simplest
case is the nilpotent chiral superfield X (X2

= 0). X has as the single propagating compo-
nent the Volkov-Akulov goldstino with supersymmetry broken by its F term component.
The nonlinearly realised supersymmetry can be essentially represented by the standard su-
persymmetric couplings of standard chiral, gauge and gravity superfields coupled to the
goldstino superfield X. Implementing this idea to the low-energy effective action of string
compactifications in the presence of anti branes allows the description of the anti brane
states from a purely supersymmetric action.

In flux compactifications the presence of an anti D3 brane, as proposed in [2], provides
probably the simplest and more model independent realisation of de Sitter space in string
theory (for other proposals see for instance [? ]). However since the anti-brane breaks the
supersymmetry preserved by the rest of the components of the compactification, the non-
supersymmetric effective field theory was not fully under control. Describing the effective
field theory that captures the physics of this anti brane in terms of a purely supersymmetric
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effect and the effective field theory has been known for more than 30 years. However if this
breaking happens at very low energies compared with the Planck mass, the goldstino cou-
plings can be described directly as an independent field in terms of a non-linear realisation
of supersymmetry, as in the original Volkov-Akulov formalism.

Extracting this effective field theory is useful if the process of supersymmetry breaking
is not fully under control such as due to strongly coupled systems or in brane models in which
the presence of different configurations of branes can break supersymmetry, sometimes even
partial breaking, and it would be important to have control on the low energy effective
theory in which supersymmetry is non-linearly realised.Over the years there have been
several approaches to describe the low-energy couplings of the goldstino in terms of spurion
or constrained superfields. We will follow here the approach of describing the goldstino in
terms of a chiral superfield X that is further constrained to be nilpotent X2

= 0 with the
aim at describing the breaking of supersymmetry due to the presence of an anti D3 brane
in flux compactifications.

The couplings of a nilpotent chiral superfield can be described in terms of very simple
Kahler and superppotential as follows:

K = K0XX⇤ W = ⇢X +W0 (2.1)

where K0, ⇢,W0 may be functions of other low-energy fields. Higher powers of X are not
present in K and W due to the nilpotency condition. Furthermore this condition implies
that for a nilpotent superfield X with components X0, , F :

X = X0(y) +
p
2 (y)✓ + F (y)✓¯✓ (2.2)

With, as usual, yµ = xµ + i✓�µ¯✓. It is easy to see that the nilpotency constraint implies
that the scalar component of X is not a propagating field but it is given by [3]:

X0 =
  

2F
(2.3)

The effective field theory (EFT) of X reproduces the Volkov-Akulov action and has
been studied both in global and local supersymmetry. For the anti D3 brane in the KKLT
scenario, the representation in terms of X is very convenient since it allows the treatment of
the presence of the supersymmetry breaking driven by the anti brane in terms of standard
supergravity couplings of matter and moduli superfields to the nilpotent goldstino. The
fact that the scalar component of X is not a propagating field is very relevant: first it fits
well with the fact that the anti D3 brane is fixed at the tip of a warped throat and so it does
not have a modulus describing its motion, contrary to D3 branes. Second, in calculating the
scalar fields potential energy, there is no contribution for X0 and it is consistent to simply
set X0 = 0 when looking for vacuum configurations in the same way we set all fermions to
zero. This simplifies substantially the calculations.
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1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:

V = K

�1
0

����
@W

@X

����
2

=

|⇢|2

K0
� 0 (1.1)

1. Recall that a probe brane in a D-brane background is described by the combi-
nation of the DBI and WZ actions:

S = �T3

Z
d

4
x

p
�g

✓
1

h

p
1� hg

µ⌫

@

µ

r@

⌫

r � q

h

◆
(1.2)

where the first term comes from the DBI action and the second term from
the Chern-Simons action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative
interaction cancels as should be for BPS states. For a brane/antibrane system,
q = �1 the two terms add and give rise to the vacuum energy plus Coulomb
interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that
introduced the volume dependence in the warp factor also acts on the 5-form
F5 = dC4 + · · · which is the one that gives the potential for the antibrane. Let
us follow KKLMMT as close as possible. As we know, in the presence of fluxes
the 10D metric is of the form:
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Rescaling the 6d metric by g
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mn

is compensated by e

2A ! �e

2A which
for � = V1/3 is what introduces the V1/3 factor in the 4d part of the metric
and gives rise to the famous V�4/3 in the uplift term. But this also scales the
solution for C4 by C4 ! �

2
C4. Recall that this is the source of the brane

antibrane coupling determined by h
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4A. So in the modification
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With the first term giving the V2/3 factor that gives the uplift and the second
term shows the origin for the V2/3 factor on the Coulomb interaction term.
Therefore what we were missing before is the scaling of the C4 term in the
action showing that there is also a V2/3 in the Coulomb term.

1

~ Volkov-Akulov ! 

• The SM Landscape. The standard model including gravity imply a landscape of vacua.

The Lagrangian of the standard model has a unique solution in four dimensions describing

the physics that we know. However this same Lagrangian allows for an essentially infinite

number of solutions in which one of the spatial dimensions is curled into a circle so the

space instead of being the Euclidean R3 it is R2 ⇥ S1 with S1 a circle. In [?] explicit

solutions have been found fixing the value of the radius of the circle from the parameters

of the standard model and using well understood quantum corrections. This provides a

concrete realisation of a ’landscape’ of huge number of universes or multiverse. Notice

that usually the existence of a landscape is associated to theories like string theory or

higher dimensional gravitational theories that are not yet confirmed by experiment and

that the existence of a multiverse is too speculative. However especially after the discovery

of the Higgs, essentially nobody questions the validity of the standard model and yet this

experimentally confirmed theory also implies the existence of a landscape of vacua, each

vacuum describing a di↵erent universe. This makes the idea of the multiverse far less

speculative than it is usually presented.

• The SM is incomplete. The standard model is almost certainly not complete. It cannot

by itself allow for an explanation of dark matter, the density perturbations of the CMB

and baryogenesis for instance. Moreover the value of the many parameters of the SM

is not understood. In particular the mass of the Higgs is not protected under quantum

corrections which tend to bring it to be as high as the limit of validity of the e↵ective field

theory, namely Mplanck. The nature of dark energy responsible for the current accelerated

expansion of the universe is not understood, especially the fact that it seems to indicate

a vacuum energy as small as ⇤ ⇠ 10�120M4
planck. Furthermore gravity is described only at

the classical or e↵ective field theory level. So the SM is not ultraviolet complete. This is

the best evidence we have for the need to go beyond the standard model.

L = �⇢2 + i@a ̄�̄
a +

1

4⇢2
 ̄2@2 2 � 1

16⇢6
 2 ̄2@2 2@2 ̄2

In order to search for the new physics that will overcome the SM we have to explore experi-

mentally all possibilities, increasing the energy, intensity and reach to the highest possible limits,

the history of science tells us we are bound to find something. For theorists we can follow several

directions:

1. Simplicity. Add the simplest possible component to the SM (e.g. one extra neutral fermion

or boson to be dark matter and/or drive inflation, etc.) and contrast with observations.

This is a way to start at least to eliminate the simplest cases and start building up a more

meaningful theory.
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Nilpotent	Superfields	and	KKLT	

1 Introduction

It is well known that the presence of anti-branes in otherwise supersymmetric string configurations

breaks supersymmetry. Describing this e↵ect in a properly defined e↵ective field theory is an interesting

challenge. In particular, the KKLT scenario of de Sitter moduli stabilisation [1,2] relies on the presence

of at least one anti-D3-brane (D3) to lift the supersymmetric AdS minimum and allow the possibility

of dS string vacua. The uplift is due to the positive energy provided by the tension of the D3 brane

located at the tip of a warped throat.

Even though it is generally agreed that the presence of an antibrane breaks supersymmetry spon-

taneously, see for example [3], a manifestly supersymmetric action describing this e↵ect was missing

until recently. The corresponding action of the D3 was presented recently in [4] starting from a single

-symmetric brane in the supersymmetric background with fluxes. Using the consistent supersym-

metric orientifold condition for the fields on the brane one finds that the vectors and scalars are cut

o↵ in this procedure. It corresponds to placing the D3 on top of an O3-plane, and the surviving part

of the brane action coincides with the Volkov-Akulov (VA) action [5]. This action has a non-linearly

realized supersymmetry on a single N = 1 fermionic goldstino which has no bosonic supersymmetric

partners. The Volkov-Akulov goldstino model has also an alternative description via a nilpotent chiral

multiplet [6,7]. In such a multiplet the scalar component, sgoldstino, is not a fundamental field but a

bilinear combination of the fermions. The auxiliary field of the nilpotent multiplet is not vanishing,

which signifies a spontaneously broken supersymmetry.

The renewed interest to KKLT construction of de Sitter vacua is partly due to improved obser-

vational data on dark energy and inflationary cosmology. The update on dark energy follows from

combining Planck data with other astrophysical data, including Type Ia supernovae. The equation of

state of dark energy is now, according to [8]

w = �1.006± 0.045 . (1.1)

This supports the idea behind the KKLT construction and other constructions such as the large

volume scenario (LVS) [9] that lead to the string landscape scenario, that a cosmological constant

with w = �1 remains a good fit to data. In fact it is a much better fit than the one in 2003 when this

construction was suggested 1.

Further motivations for nilpotent superfields come from cosmology. The recent bottom-up approach

to cosmology [16–18] using an e↵ective d=4 N = 1 supergravity has very nice phenomenological

features. Namely, new supergravity models were constructed depending on two chiral superfields [16],

an inflaton superfield and a nilpotent superfield X satisfying the nilpotency condition X2(x, ✓) = 0.

These models agree nicely with the Planck data [8], during inflation the scale of �⇢

⇢

and the tilt of a

power spectrum n
s

take their known observational values. Meanwhile, the level of primordial gravity

waves r depends on the curvature of the moduli space and is therefore flexible with regard to future

discovery of gravity waves or a new bound on r. At the minimum of inflationary potential in the

recent models in [18] supersymmetry is broken spontaneously in de Sitter vacua and the cosmological

1For other approaches towards de Sitter space in string compactifications see [10–15].
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Goldstino: Nilpotent chiral 
superfield 

throat is dual to a cascade of Seiberg dualities in a theory with M fractional branes and N = KM

D3-branes (at some UV cuto↵ scale), the warp factor at the bottom of the throat is

z ⇠ exp
�
� 2⇡K

Mg
s

�
(3.7)

Actually, di↵erent throats lead to di↵erent order 1 numerical factors in the exponent, related to the

amount of D3-branes disappearing in a duality period. The important point is however that the

parametric dependence in K and M is maintained, and therefore the throats lead to exponential

suppressions with respect to the bulk or cuto↵ scales.

4 Coupling the Nilpotent field to moduli and matter fields

We have seen that the parameter M reflects the breaking of supersymmetry, and the goldstino belongs

to a chiral nilpotent superfield X. In this section we provide a preliminary discussion of how X

might couple to the moduli and matter fields in a full string compactification, leaving a more detailed

description for the future.

Let us assume that the complex structure moduli and dilaton have been stabilised supersymmet-

rically by the fluxes, and consider as simple model of the remaining dynamics. We consider the (for

simplicity, a single) Kähler modulus T , the nilpotent superfield X, and a chiral superfield C as a

representative matter field, which we assume to be stabilized at C = 0 but we keep it in the action to

study how its components split after supersymmetry breaking.

In general the Kähler potential can be written as

K = �3 log (T + T ⇤) + c (T + T ⇤)n XX⇤ + ZCC⇤ + · · · (4.1)

where

Z = (T + T ⇤)m + b (T + T ⇤)k XX⇤ (4.2)

The coe�cients c, b are arbitrary (after absorbing other coe�cients as field redefinitions of C ) and

also the ‘modular weights’ n,m, k which are expected to be non-positive rational numbers. Particular

cases are n,m, b = 0 corresponding to canonical kinetic terms for both X and C. Also the case

n = m = �1, k = �2, b = 1/3 corresponds to the Kähler potential K = �3 log(T +T ⇤�CC⇤� cXX⇤)
after scaling properly the fields C and X. The superpotential is

W = W
0

+MX +W
matter

+W
np

(4.3)

where both W
0

and M are functions of the complex structure moduli and dilaton at their minimum,

W
matter

= C3 + · · · , and W
np

= Ae�aT . We will work in the limit a (T + T ⇤) � 1 in order to have a

proper non-perturbative expansion.

The coupling between T and X modifies the appearance of M in the scalar potential and gives:

V
uplift

=
|M |2

c (T + T ⇤)n+3

(4.4)
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1 Effective Field Theory of KKLMMT Revisited
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1. Recall that a probe brane in a D-brane background is described by the combi-
nation of the DBI and WZ actions:
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where the first term comes from the DBI action and the second term from
the Chern-Simons action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative
interaction cancels as should be for BPS states. For a brane/antibrane system,
q = �1 the two terms add and give rise to the vacuum energy plus Coulomb
interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that
introduced the volume dependence in the warp factor also acts on the 5-form
F5 = dC4 + · · · which is the one that gives the potential for the antibrane. Let
us follow KKLMMT as close as possible. As we know, in the presence of fluxes
the 10D metric is of the form:
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The 5-form field strength F5 = dC4 + ... is:
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Rescaling the 6d metric by g
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mn
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for � = V1/3 is what introduces the V1/3 factor in the 4d part of the metric
and gives rise to the famous V�4/3 in the uplift term. But this also scales the
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Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold
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Abstract

We describe in detail how the spectrum of one anti-D3-brane in four-dimensional orientifolded

IIB string models reproduces precisely the field content of a constrained nilpotent chiral superfield

with one single physical component corresponding to the goldstino. In particular we explicitly

consider D3 on top of an O3-plane in warped throats, induced by (2, 1) fluxes. More general systems

including several anti-branes and other orientifold planes are also discussed. This provides further

evidence to the claim that non-linearly realised supersymmetry due to the presence of antibranes in

string theory can be described by standard supersymmetric theories including nilpotent superfields.

Implications to the KKLT and related scenarios of de Sitter moduli stabilisation, to cosmology and

to the structure of soft SUSY-breaking terms are briefly discussed.
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Spectrum	on	(an2)	D3	brane	

2 String theory realization of the nilpotent goldstino

In this section we provide the string theory construction of a local system of D3-branes on warped

throats and show that the worldvolume spectrum contains only the goldstino of the broken super-

symmetries, with no extra fields. This shows, with account of a non-linear goldstino coupling, that

the presence of the D3-brane breaks supersymmetry spontaneously. This also simplifies the descrip-

tion of systems including this kind of antibranes, by using the nilpotent goldstino multiplet to write

supersymmetric actions [7].

The construction is based on one D3-brane on top of an O3-plane at the bottom of a warped throat

(or in more generality, in the presence of imaginary self-dual (ISD) 3-form flux G
3

). This is precisely

the setup used in uplifting to de Sitter (in the KKLT or LARGE volume scenarios), and in the inflation

models described in the introduction.

In this section we only use general features of warped throats, like the presence of supersymmetric

3-form fluxes. Explicit examples will be discussed in section 3.

2.1 D3- and D3-branes on warped throats

We now describe the worldvolume spectrum on D3- and/or D3-branes on top of O3-planes. These

computations are relatively standard, and we basically quote the results and their physical interpre-

tation.

2.1.1 Open string spectra in 10d flat space

As a warmup, consider a stack of N D3-branes in flat 10d space. As is familiar [3], the massless open

string spectrum, classified according to representations of the SO(3, 1) 4d Lorentz group on the brane

worldvolume, the SO(6) ' SU(4) rotation group in the transverse dimensions, and the U(N) gauge

group, is shown in Table 1.

Field SO(3, 1) SO(6) U(N)

Gauge boson vector 1 Adj

Scalar 1 6 Adj

Fermion spinor 4 Adj

Table 1: Spectrum on a stack of N D3-branes in flat space

It is the N = 4 U(N) super Yang-Mills vector multiplet. The supersymmetry of the open string

sector is related, by open-closed duality, to the BPS cancellation of NSNS and RR closed string

exchange between parallel D3-branes, as follows. The one-loop open string partition function (annulus

5

diagram) is given (up to a center of mass momentum factor) by

Z
annulus

= trH
open NS+R

�
qL0

�
(2.1)

where q = e�2⇡t is the modular parameter and L
0

is the open string Hamiltonian in the NS or R

Hilbert space H
open

. The diagram can be transformed into a tree level exchange of NSNS and RR

closed string states between boundaries, i.e. D3-branes, with the structure

Z
annulus

= hD3| q0 2L0 |D3i
NSNS

+ hD3| q0 2L0 |D3i
RR

(2.2)

where now L
0

is the closed string Hamiltonian in the NSNS and RR sectors, the factor of 2 in the

exponent accounts for left- and right-moving sectors, and q0 = e�2⇡t

0
with t0 = 1/t.

If we instead consider a stack of N D3-branes, we obtain precisely the same spectrum, as there is no

way to distinguish D3- from D3-branes if they are isolated configurations (see e.g. [23] for review). The

only di↵erence, since they preserve opposite set of supersymmetries, is that the fermions transform in

the 4 of SU(4), which amounts to a mere convention in the absence of extra ingredients. Of course,

in real string compactifications there are many ingredients that distinguish them. In our case, we are

interested in branes located on warped throats supported by fluxes. We turn to consider their e↵ect

on the worldvolume spectrum.

2.1.2 E↵ects of fluxes in warped throats

The masslessness of the above spectrum is in general modified in the presence of NSNS and RR 3-form

fluxes G
3

, such as those supporting the throat (or with more general fluxes introduced to stabilize

compactification moduli) [24, 25].

We start by pointing out that such fluxes have no e↵ect on the gauge group, so the gauge bosons

remain massless. The e↵ect of fluxes on the remaining massless sector was considered in [26–28] (see [4]

for a recent analysis of the action of the D3-brane action subject to orientifolding condition). We use

a language from [27,4]. Consider first the fermions �, which transform as a 4 (or 4̄) under the SO(6)

rotation group. As shown by these references, the fermions pick up a mass term of the form

G
3

�� (2.3)

The precise flux components providing mass for each of the four fermions follow from the SO(6)

selection rules. The flux density G
3

is a 3-index antisymmetric tensor, which decomposes into an

imaginary self-dual (ISD) and imaginary antiself-dual (IASD) parts, transforming as a 10 and 10 of

SO(6), respectively. Therefore, the fermions on a D3-brane can couple (through 4 ·4 ·10) to the IASD

flux component, and remain massless in ISD fluxes. This is a consequence of the cancellation between

contributions from the DBI and the CS actions, as checked explicity in the above references. On the

other hand, we get the opposite result for D3-branes, whose fermions remain massless in the presence

of IASD flux, but get masses (through 4̄ · 4̄ · 10) in the presence of ISD fluxes.
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1 Effective Field Theory of KKLMMT Revisited
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1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:

S = �T3

Z
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p
�g
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1

h

p
1� hg
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@

µ

r@

⌫

r � q

h

◆
(1.6)

where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.
As we know, in the presence of fluxes the 10D metric is of the form:

ds

2
10 = e

2A
⌘

µ⌫

dx

µ

dx

⌫

+ e

�2A
g

mn

dy

m

dy

n (1.7)

The 5-form field strength F5 = dC4 + ... is:

(F5)
rtx

1
x

2
x

3 =

@e

4A

@r

(1.8)

Rescaling the 6d metric by g

mn

! �g

mn

is compensated by e

2A ! �e

2A which for � = V1/3

is what introduces the V1/3 factor in the 4d part of the metric and gives rise to the famous
V�4/3 in the uplift term. But this also scales the solution for C4 by C4 ! �

2
C4. Recall that

this is the source of the brane antibrane coupling determined by h

�1 with h

�1
= e

4A. So
in the modification of the antibrane to the coupling h

�1 ! h

�1
0 (1 � �h/h0) we have now a

scaling of h0 as h

�1
0 ! V2/3

h

�1
0 and so

h

�1
0

✓
1� �h

h0

◆
! V2/3

h

�1
0

✓
1� V2/3 �h

h0

◆
(1.9)

1

Masses from fluxes 
 − 
 

(10=6+3+1 and 4=3+1 of SU(3)) 

diagram) is given (up to a center of mass momentum factor) by

Z
annulus

= trH
open NS+R

�
qL0

�
(2.1)

where q = e�2⇡t is the modular parameter and L
0

is the open string Hamiltonian in the NS or R
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is the closed string Hamiltonian in the NSNS and RR sectors, the factor of 2 in the

exponent accounts for left- and right-moving sectors, and q0 = e�2⇡t
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If we instead consider a stack of N D3-branes, we obtain precisely the same spectrum, as there is no

way to distinguish D3- from D3-branes if they are isolated configurations (see e.g. [23] for review). The

only di↵erence, since they preserve opposite set of supersymmetries, is that the fermions transform in

the 4 of SU(4), which amounts to a mere convention in the absence of extra ingredients. Of course,

in real string compactifications there are many ingredients that distinguish them. In our case, we are

interested in branes located on warped throats supported by fluxes. We turn to consider their e↵ect

on the worldvolume spectrum.

2.1.2 E↵ects of fluxes in warped throats

The masslessness of the above spectrum is in general modified in the presence of NSNS and RR 3-form

fluxes G
3

, such as those supporting the throat (or with more general fluxes introduced to stabilize

compactification moduli) [24, 25].

We start by pointing out that such fluxes have no e↵ect on the gauge group, so the gauge bosons

remain massless. The e↵ect of fluxes on the remaining massless sector was considered in [26–28] (see [4]

for a recent analysis of the action of the D3-brane action subject to orientifolding condition). We use

a language from [27,4]. Consider first the fermions �, which transform as a 4 (or 4̄) under the SO(6)

rotation group. As shown by these references, the fermions pick up a mass term of the form

G
3

�� (2.3)

The precise flux components providing mass for each of the four fermions follow from the SO(6)

selection rules. The flux density G
3

is a 3-index antisymmetric tensor, which decomposes into an

imaginary self-dual (ISD) and imaginary antiself-dual (IASD) parts, transforming as a 10 and 10 of

SO(6), respectively. Therefore, the fermions on a D3-brane can couple (through 4 ·4 ·10) to the IASD

flux component, and remain massless in ISD fluxes. This is a consequence of the cancellation between

contributions from the DBI and the CS actions, as checked explicity in the above references. On the

other hand, we get the opposite result for D3-branes, whose fermions remain massless in the presence

of IASD flux, but get masses (through 4̄ · 4̄ · 10) in the presence of ISD fluxes.

6

Mass term 

3 massive 1 massless fermion (N=1 goldstino) 



Local to Global Throats 

Figure 1: From local to global orientifold realisation of the anti-D3-brane at the tip of

orientifolded conifold threaded by three-form fluxes on two dual three-cycles

brane uplift and its representation in an EFT by nilpotent superfields. Section 3 is devoted

to addressing in a systematic way the local realisation of an D3 sitting on top of orientifold

plane configuration O3 at the tip of a deformed and orientifolded Klebanov-Strassler (KS)

throat. Finally in section 4 we address the main goal of the article which is to embed the local

constructions into compact CY backgrounds. We present two concrete examples. In the first

example we illustrate how to construct models with the right local structure basically from

scratch. It turns out that F-theory provides an e�cient way of building such models. The

second example is in fact a Calabi-Yau that had already been studied in the model building

context before. We show that it has the right local structure in order to admit a nilpotent

Goldstino sector. We end with the conclusions in section 5.

2 Anti-D3-branes and nilpotent goldstino

In type IIB string theory has RR and NSNS three forms field strength, encoded into the

complex three-form G3, can thread quantised fluxes on the non-trivial 3-cycles of Calabi-Yau

compactifications. Their impact is to fix the corresponding complex structure moduli and at

the same time inducing a warp factor e2D in the background metric:

ds2 = e2Dds24 + e�2Dds2CY . (2.1)

One can write the (internal coordinate dependent) warp factor such as e�4D = 1 + e�4A

V2/3 .

A large warped region, called warped throat, is made up of points where e�2D � V1/3.

Typically these throats arise around deformed conifold singularities. At the tip of the throat

– 3 –

Garcia-Etxebarria, FQ, Valandro 
arXiv:1512.06926   

with

P̂ =
X

i=1,3,4

(z25⇤+ sz2i )sz
2
i + (z25 + z22)z

2
2⇤

2 � t2z45⇤
2 (4.22)

and

ĥ = ⇤p2(z2, z5) + sq2(z1, z3, z4) (4.23)

the proper transforms of the original divisors. We start by imposing ⇠ = 0. This gives rise to a

toric space A⇠ of one dimension lower, which can easily be seen to be smooth. Similarly, ĥ = 0

gives rise to a smooth hypersurface Y in A⇠, and it can be seen that the O7 locus P̂ = 0 ⇢ Y is

also smooth. So by straightforward repeated application of the Lefschetz hyperplane theorem

we learn that H1(O7,Z) = H1(Â,Z), with Â the ambient toric space (4.20). But it is easy to

see that ⇡1(Â) = 0 from standard considerations in toric geometry (see for instance theorem

12.1.10 in [50]), so by the Hurewicz isomorphism and Poincaré duality on the O7 worldvolume

we learn that H3(O7,Z) = 0.

4.2 Goldstino retrofitting

The model in the previous section was designed in order to display the structure of interest.

While this is interesting, it is also interesting to see if existing, phenomenologically inter-

esting type IIB models with O3-planes admit the addition of a nilpotent Goldstino sector,

“retrofitting” them with a possible de Sitter uplift mechanism at little cost.

To show that this is indeed the case, we consider the model in [51, 52]. It is constructed

starting from a hypersurface in the toric ambient space

W1 W2 W3 W4 W5 Z X Y DH

C⇤
1 0 0 0 0 0 1 2 3 6

C⇤
2 1 1 1 0 0 0 6 9 18

C⇤
3 0 1 0 1 0 0 4 6 12

C⇤
4 0 0 1 0 1 0 4 6 12

, (4.24)

with SR-ideal

SR = {W1W2W3, W2W4, W3W5, W4W5, W1W2X Y, W1W3X Y, W4 Z, W5 Z, X Y Z} .
(4.25)

The last column indicates the degree of the polynomial defining the CY three-fold. This

polynomial takes the form of a Weierstrass model

Y 2 = X3 + f(Wi)X Z4 + g(Wi)Z
6 , (4.26)

where f and g are respectively polynomials of degree (0, 12, 8, 8) and (0, 18, 12, 12) in the

coordinates W1, . . . ,W5.

This CY X has Hodge numbers h1,1 = 4 and h1,2 = 214. The intersection form takes the

simple expression

I3 = 9D3
1 +D3

2 +D3
3 + 9D3

4 (4.27)

– 27 –
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SUSY Breaking from moduli 

Notice that this agrees with the KKLT expression for n = 0 and the KKLMMT (warped) expression

for n = �1. In this case the warping can be absorbed in the coe�cient |M |2/c.

Even though without the uplifting term the field T is stabilised supersymmetrically (D
T

W =

@
T

W +K
T

W = 0), the presence of the uplift term induces a shift on the value of T that generates a

non-zero F term for T . We find:

F
T

= eK/2D
T

W ⇠ 3W
0

(T + T ⇤)3/2
✏ (4.5)

with

✏ =
3 + n

c

1

a2 (T + T ⇤)2
(4.6)

This induces, as expected, a small shift in the scalar potential:

V
0

=
|M |2

c (T + T ⇤)n+3

� 3m2

3/2

+O
⇣
✏m2

3/2

⌘
(4.7)

A nonvanishing value of M reflects the breaking of supersymmetry. However its impact on matter

fields C and standard model gauginos needs to be computed. We will assume here for simplicity 10,

that the standard expressions for soft terms [54] (gaugino masses M
1/2

, scalar masses m
0

and trilinear

A- terms) can be applied even in case that one of the superfields is nilpotent

M
1/2

=
1

f + f⇤F
I@

I

f

A
↵��

= F IK
I

+ F I@
I

log Y
↵��

� F I@
I

log (Z
↵

Z
�

Z
�

) (4.8)

m2

0

= V
0

+m2

3/2

� F IF J@
I

@
J

logZ

Here, indices ↵, �, � label di↵erent matter fields, indices I, J run over moduli fields and in our case also

the X field. Also, f is the holomorphic gauge kinetic function of the visible sector, depending only on

moduli fields and dilaton, and Y
↵��

are Yukawa couplings among matter fields. It is clear from these

expressions that that the F term of the nilpotent superfield X only a↵ects the scalar masses11: first,

note that X is localised, so f cannot depend on it, and hence the contribution of F
X

to gaugino masses

vanishes; second, since the scalar component of X vanishes in the vacuum, it gives no contribution to

A. On the other hand the first and third terms in the expression for the scalar masses do depend on

M . Using FX = eK/2K�1

XX

⇤D
X

W = M/ (T + T ⇤)n+3/2 and F
T

/ (T + T ⇤) = O
�
✏1/2m

3/2

�
we find:

M
1/2

, A = O
⇣
✏1/2m

3/2

⌘

m2

0

= V
0

+m2

3/2

� FXFX

⇤
@
X

@
X

⇤ logZ +O
⇣
✏m2

3/2

⌘

= V
0

+m2

3/2

� b

c2
(T + T ⇤)k�m�2n�3 |M |2 +O

⇣
✏m2

3/2

⌘
(4.9)

After tuning the vacuum energy to V
0

⇠ 0 we can see that the soft scalar masses are of order the

maximum between the second and third term. For k = m + n these are all of order m2

0

⇠ m2

3/2

as

10The validity of this assumptions will be tested when the complete supergravity models interacting with a nilpotent

multiplet and other chiral multiplets will be constructed.
11This qualitative feature for anti-D3-brane SUSY breaking was derived in [27] in the probe approximation.
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General soft terms: Moduli z, matter ϕ 

Soni+Weldom, Kaplunovsky-
Louis, Brignole-Ibanez-Munoz 

• The SM Landscape. The standard model including gravity imply a landscape of vacua.

The Lagrangian of the standard model has a unique solution in four dimensions describing

the physics that we know. However this same Lagrangian allows for an essentially infinite

number of solutions in which one of the spatial dimensions is curled into a circle so the

space instead of being the Euclidean R3 it is R2 ⇥ S1 with S1 a circle. In [?] explicit

solutions have been found fixing the value of the radius of the circle from the parameters

of the standard model and using well understood quantum corrections. This provides a

concrete realisation of a ’landscape’ of huge number of universes or multiverse. Notice

that usually the existence of a landscape is associated to theories like string theory or

higher dimensional gravitational theories that are not yet confirmed by experiment and

that the existence of a multiverse is too speculative. However especially after the discovery

of the Higgs, essentially nobody questions the validity of the standard model and yet this

experimentally confirmed theory also implies the existence of a landscape of vacua, each

vacuum describing a di↵erent universe. This makes the idea of the multiverse far less

speculative than it is usually presented.

• The SM is incomplete. The standard model is almost certainly not complete. It cannot

by itself allow for an explanation of dark matter, the density perturbations of the CMB

and baryogenesis for instance. Moreover the value of the many parameters of the SM

is not understood. In particular the mass of the Higgs is not protected under quantum

corrections which tend to bring it to be as high as the limit of validity of the e↵ective field

theory, namely Mplanck. The nature of dark energy responsible for the current accelerated

expansion of the universe is not understood, especially the fact that it seems to indicate

a vacuum energy as small as ⇤ ⇠ 10�120M4
planck. Furthermore gravity is described only at

the classical or e↵ective field theory level. So the SM is not ultraviolet complete. This is

the best evidence we have for the need to go beyond the standard model.

L = �⇢2 + i@a ̄�̄
a +

1

4⇢2
 ̄2@2 2 � 1

16⇢6
 2 ̄2@2 2@2 ̄2

KT (z
I , z̄J ,�↵, �̄�) = K(zI , z̄J) + Z↵�(z

I , z̄J)�↵�̄� + · · ·

In order to search for the new physics that will overcome the SM we have to explore experi-

mentally all possibilities, increasing the energy, intensity and reach to the highest possible limits,

the history of science tells us we are bound to find something. For theorists we can follow several

directions:

1. Simplicity. Add the simplest possible component to the SM (e.g. one extra neutral fermion

or boson to be dark matter and/or drive inflation, etc.) and contrast with observations.
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• gravity mediation

If the mediating field couples with gravitational strength to the standard model, the couplings will be

suppressed by the inverse Planck mass Mpl which is the natural scale of gravity. We must include some

mass square to get the right dimension for the mass splitting in the observable sector. That will be the

square of SUSY breaking mass M 6SUSY:

�m =
M2

6 SUSY

Mpl
.

We want �m ⇡ 1 TeV and know Mpl ⇡ 1018 GeV, so

M 6SUSY =
p

�m ·Mpl ⇡ 1011 GeV .

The gravitino gets a mass m 3
2
of �m order TeV from the super Higgs mechanism.

• gauge mediation

G =
�

SU(3) ⇥ SU(2) ⇥ U(1)
�

⇥ G 6SUSY =: G0 ⇥ G 6SUSY

Matter fields are charged under both G0 and G 6SUSY which gives a M 6SUSY of order �m, i.e. TeV. In

that case, the gravitino mass m 3
2
is given by

M2
6 SUSY

Mpl
⇡ 10�3 eV.

• anomaly mediation

In this case, auxiliary fields of supergravity (or Weyl compensator) get a vacuum expectation value.

The e↵ects are always present but suppressed by loop e↵ects.

Each if these scenarios has phenomenological advantages and disadvantages and solving their problems is

an acting fields of research at the moment. In all scenarios, the Lagrangian for the observable sector has

contributions

L = LSUSY + L 6SUSY

Where:

L 6SUSY = m2
0 '

⇤ '
| {z }

scalar masses

+

0

@ M� ��
| {z }

gaugino masses

+ h.c.

1

A + (A'3 + h.c.)

M�,m2
0, A are called soft breaking terms. They determine the amount by which supersymmetry is expected

to be broken in the observable sector and are the main parameters to follow in the attempts to identify

supersymmetric theories with potential experimental observations.

6.4 The hierarchy problem

In high energy physics there are at least two fundamental scales - the Planck mass Mpl ⇡ 1019 GeV defining

the scale of quantum gravity and the electroweak scale Mew ⇡ 102 GeV, defining the symmetry breaking

scale of the Standard Model. Understanding why these two scales are so di↵erent is the hierarchy problem.

Actually the problem can be formulated in two parts:
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4D SUGRA multiplet. As we will see, in such situation the dominant effects
of D̄3 on the other parts of the theory can be described by a single spurion
operator which corresponds to the D̄3 tension.

Let us consider the 10D action at energies below Mst of the following
form:

S10D =
∫

d10x
[

LIIB + δ2(z − zD7)LD7 + δ6(y − yD3)LD3 + δ6(y − yD̄3)LD̄3

]

,(25)

where LIIB is the 10D IIB SUGRA action, LDp denotes the worldvolume
action of Dp brane, and z and y correspond to the transverse coordinates of
D7 and D3 branes, respectively. The 4D effective action of the light fields
is of the form S4D = SN=1 + SD̄3, where SN=1 is the N = 1 SUGRA action
originating from LIIB and LD7/D3, while SD̄3 is from the non-supersymmetric
LD̄3. The N = 1 supersymmetric part can be written in the standard super-
space form:

SN=1 =
∫

d4x
√

gC

[
∫

d4θ CC∗ (−3 exp(−Keff/3))

+
{
∫

d2θ
(

1

4
faW

aαW a
α + C3Weff

)

+ h.c.
} ]

, (26)

where gC
µν = (CC∗)−1eKeff /3gE

µν for the 4D Einstein-frame metric gE
µν and the

chiral compensator superfield C = C0 + θ2F C , and the Kähler and superpo-
tential can be expanded as

− 3 exp[−Keff/3] = −3 exp[−K0(Φ
m, Φm∗)/3] + Yi(Φ

m, Φm∗)Q∗
i Qi,

Weff = W0(Φ
m) +

1

6
λijk(Φ

m)QiQjQl,

fa = fa(Φ
m), (27)

where Φm denote the gauge singlet light moduli and Qi stand for the gauge
charged matter fields. In (26), we have ignored the 4D SUGRA multiplet
other than the metric component. In this scheme, C0 is a redundant degree
of freedom, which is reflected by the invariance under the following Weyl
transformation which is a part of the super Weyl invariance in the full com-
pensator formulation:

C → e−2τC, gµν → e2(τ+τ̄ )gµν , θα → e−τ+2τ̄θα, (28)

where τ is a complex constant.

11

As stressed, SD̄3 does not depend on the matter and gauge superfields
confined in D7/D3. Then at the leading order in the supercovariant derivative
expansion, SD̄3 can be written as

SD̄3 =
∫

d4x
√

gC

∫

d4θ
[

−
1

2
e4AminC2C2∗θ2θ̄2P (Φm, Φm∗)

+ e3AminC3θ̄2Γ(Φm, Φm∗) + h.c.
]

, (29)

where P and Γ are model-dependent functions of Φm and Φm∗, which are
generically of order unity (in units with MP l = 1), and eAmin is the (generi-
cally moduli-dependent) warp factor on D̄3. The C-dependence of SD̄3 can
be determined by requiring invariance of the D̄3 action under the Weyl trans-
formation (28). Then the power of warp factor in each spurion operator is
determined by the C-dependence since both C0 and the warp factor corre-
spond to the conformal mode of the 4D metric.

The N = 1 SUSY appears to be explicitly broken in (29). In fact, the
N = 1 SUSY might be non-lineraly realized as suggested in [23] through
a Goldstino fermion ξα living on the worldvolume of D̄3. In this case, the
D̄3 action (29) can be extended to a manifestly supersymmetric form by
replacing the D-spurion θ2θ̄2 by a real superfield Λ2Λ̄2, and the F -spurion
by a chiral superfield (D̄2 − 8R)Λ2Λ̄2, where Λα is the Goldstino superfield
defined in [24]:

Λα = θα +
1

M2
D̄3

ξα + ... (30)

for MD̄3 ∼ eAminMst, and (D̄2 − 8R) is the chiral projection operator of 4D
SUGRA. Then the spurion operators of (29) can be obtained from the follow-
ing form of super-Weyl invariant action involving the Goldstino superfield:

SD̄3 =
∫

d4x
√

gC
∫

d4θ C̃C̃∗ LD̄3(
C̃1/2

C̃∗
Dα,

C̃∗

C̃1/2
Λα, Φm) , (31)

where C̃ = eAminC.
The coefficient function e4AminP can be easily computed for the minimal

KKLT model in which the only light modulus is the overall volume mod-
ulus T . In such model, the warp factor on D̄3 depends on T as eAmin =
(Re(T ))1/4 e−2πn/gstm [4]. Matching the D̄3 tension to (29) under the rela-
tion between the 4D Einstein frame metric gE

µν and the string frame metric
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gsµν = e2A(y) (Re(T ))−3/2 gE
µν , one finds

e4Amine2K0/3P =
D

(T + T ∗)2
, (32)

where D is a constant of order M4
P le

−8πn/gstm.

3.2 Soft terms in the presence of anti-D3 brane

In the presence of SD̄3 which breaks SUSY explicitly or realizes SUSY non-
linearly, the resulting soft terms are modified compared to the known results
in standard 4D SUGRA. Solving the equations of motion for the auxiliary
fields in S = SN=1 + SD̄3, one easily finds

F C

C0
=

1

3
∂IKeffF

I +
C∗2

0

C0
eKeff/3

(

Weff + e3AminΓ
)∗

,

F I = −
C∗2

0

C0
eKeff/3KIJ̄

eff

(

DJ

(

Weff + e3AminΓ
) )∗

, (33)

where {ΦI} = {Φm, Qi}, the Kähler covariant derivative DIX = ∂IX +
(∂IKeff)X, and one can choose C0 = eKeff /6 to arrive at the Einstein metric
frame. It is then straightforward to find the following moduli potential and
the soft parameters of the canonically normalized visible fields in the Einstein
frame:

V0 = eK0

[

Kmn̄
0 Dm(W0 + e3AminΓ)

(

Dn(W0 + e3AminΓ)
)∗

−3|W0 + e3AminΓ|2
]

+ e4Amine2K0/3P,

Lsoft = −m2
i |Q̃i|2 −

(

1

2
Maλ

aλa +
1

6
AijkyijkQ̃iQ̃jQ̃k + h.c.

)

, (34)

where

Ma = F m∂m ln (Re(fa)) ,

Aijk = −F m∂m ln

(

λijk

YiYjYk

)

,

= −F m

(

∂mK0 + ∂m ln

(

λijk

ZiZjZk

))

,

m2
i =

2

3
V0 − F mF n∗∂m∂n̄ ln (Yi)

= −
1

3
e4Amine2K0/3P +

(

V0 + m2
3/2 − F mF n∗∂m∂n̄ ln (Zi)

)

(35)
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for the canonically normalized Yukawa couplings

yijk =
λijk

√

YiYjYk

. (36)

Here Zi = eK0/3Yi is the Kähler metric of Qi, i.e.

Keff = K0(Φ
m, Φm∗) + Zi(Φ

m, Φm∗)QiQ
∗
i , (37)

and m3/2 is the gravitino mass containing both the standard N = 1 contri-
bution from W0 and the contribution from D̄3:

m3/2 = MP le
K0/2

(

W0 + e3AminΓ
)

. (38)

In the literature [10], Aijk and m2
i are normally expressed in terms of the

moduli Kähler potential K0 and the matter Kähler metric Zi. Our results
(35) show that it is more convenient to express those soft parameters in terms
of the superspace wavefunction coefficient Yi = e−K0/3Zi, particularly when
the effects of the SUSY breaking D̄3 are included.

Obviously, when P = Γ = 0, (33), (34) and (35) become the standard
expressions of the SUSY breaking auxiliary components, the moduli potential
and the soft terms in N = 1 SUGRA. In KKLT models, in the absence of
D̄3, W0 leads to a SUSY AdS vacuum. Generically P and Γ are of order one
for the moduli VEV of order unity, while W0 is of order m3/2/MP l. Then, as
we have noticed in sec. 2.2, in order for the AdS vacuum to be uplifted to
a Minkowski vacuum by D̄3, one needs eAmin ∼

√

m3/2/MP l. This implies
that

e3AminΓ ∼
√

m3/2/MP l W0, (39)

and thus the contribution to m3/2 from e3AminΓ is negligible compared to the
contribution from W0 induced by the flux and gaugino condensations. This
means that e3AminΓ can be safely ignored, so the effects of D̄3 on the low
energy dynamics of the moduli and visible fields can be described well by
a single coefficient function P . In such case, the SUSY breaking auxiliary
components are well approximated by the standard N = 1 expressions:

F C

C0
≃

1

3
∂mK0F

m + MP le
K0/2W ∗

0 ,

F m ≃ −MP le
K0/2Kmn̄

0 (DnW0)
∗ ,

m3/2 ≃ MP le
K0/2W0 , (40)
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<< W0 

m3/2 close to the TeV scale. Such value of at gives rise to a little hierarchy
between the moduli mass mT , the gravitino mass and the gaugino/sfermion
soft masses:

mT ∼ 4π2m3/2 ∼ (4π2)2msoft . (48)

A particularly interesting feature of the model is that

F T

(T + T ∗)
∼

1

4π2

F C

C0
, (49)

and as a consequence the anomaly-mediation always gives a non-negligible
contribution to soft masses.

In some cases, fluxes might preserve accidently a (discrete) R-symmetry,
and thereby yield w0 = 0. Still T can be stabilized by introducing multiple
gaugino condensations. Such case can be described by

Model 2 : K0 = −3 ln(T + T ∗),

W0 = C1e
−a1T − C2e

−a2T ,

Vlift = D/tnt (T = t + iτ), (50)

where we can choose C1 and C2 to be real and positive without loss of gen-
erality and then set ⟨τ⟩ = 0. In order to stabilize t at a value yielding
hierarchically small m3/2/MP l, one needs to tune a1,2 as

|a1 − a2| ≈
a1 + a2

ln(MP l/m3/2)
, (51)

as in the standard racetrack model [25]. We then find

F C

C0
≈ m3/2 ≈

a2 − a1

2
√

2 a1t
3

2

MP lC2e
−a2t,

FT

(T + T ∗)
≈

3 nt

4 a1t a2 t
m3/2,

mt ≈ mτ ≈
4a1 t a2 t

3
m3/2, (52)

where

a1t ≈ a2t ≈ ln(MP l/m3/2) . (53)

The most important feature of this model is that FT
(T+T ∗) ∼

m3/2

(a t)2 where at ≈
4π2, and as a consequence the soft terms are dominated by the anomaly-
mediated contributions.
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Notice that this agrees with the KKLT expression for n = 0 and the KKLMMT (warped) expression

for n = �1. In this case the warping can be absorbed in the coe�cient |M |2/c.

Even though without the uplifting term the field T is stabilised supersymmetrically (D
T

W =

@
T

W +K
T

W = 0), the presence of the uplift term induces a shift on the value of T that generates a

non-zero F term for T . We find:

F
T

= eK/2D
T

W ⇠ 3W
0

(T + T ⇤)3/2
✏ (4.5)

with

✏ =
3 + n

c

1

a2 (T + T ⇤)2
(4.6)

This induces, as expected, a small shift in the scalar potential:

V
0

=
|M |2

c (T + T ⇤)n+3

� 3m2

3/2

+O
⇣
✏m2

3/2

⌘
(4.7)

A nonvanishing value of M reflects the breaking of supersymmetry. However its impact on matter

fields C and standard model gauginos needs to be computed. We will assume here for simplicity 10,

that the standard expressions for soft terms [54] (gaugino masses M
1/2

, scalar masses m
0

and trilinear

A- terms) can be applied even in case that one of the superfields is nilpotent

M
1/2

=
1

f + f⇤F
I@

I

f

A
↵��

= F IK
I

+ F I@
I

log Y
↵��

� F I@
I

log (Z
↵

Z
�

Z
�

) (4.8)

m2

0

= V
0

+m2

3/2

� F IF J@
I

@
J

logZ

Here, indices ↵, �, � label di↵erent matter fields, indices I, J run over moduli fields and in our case also

the X field. Also, f is the holomorphic gauge kinetic function of the visible sector, depending only on

moduli fields and dilaton, and Y
↵��

are Yukawa couplings among matter fields. It is clear from these

expressions that that the F term of the nilpotent superfield X only a↵ects the scalar masses11: first,

note that X is localised, so f cannot depend on it, and hence the contribution of F
X

to gaugino masses

vanishes; second, since the scalar component of X vanishes in the vacuum, it gives no contribution to

A. On the other hand the first and third terms in the expression for the scalar masses do depend on

M . Using FX = eK/2K�1

XX

⇤D
X

W = M/ (T + T ⇤)n+3/2 and F
T

/ (T + T ⇤) = O
�
✏1/2m

3/2

�
we find:

M
1/2

, A = O
⇣
✏1/2m

3/2

⌘

m2

0

= V
0

+m2

3/2

� FXFX

⇤
@
X

@
X

⇤ logZ +O
⇣
✏m2

3/2

⌘

= V
0

+m2

3/2

� b

c2
(T + T ⇤)k�m�2n�3 |M |2 +O

⇣
✏m2

3/2

⌘
(4.9)

After tuning the vacuum energy to V
0

⇠ 0 we can see that the soft scalar masses are of order the

maximum between the second and third term. For k = m + n these are all of order m2

0

⇠ m2

3/2

as

10The validity of this assumptions will be tested when the complete supergravity models interacting with a nilpotent

multiplet and other chiral multiplets will be constructed.
11This qualitative feature for anti-D3-brane SUSY breaking was derived in [27] in the probe approximation.
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multiplet and other chiral multiplets will be constructed.
11This qualitative feature for anti-D3-brane SUSY breaking was derived in [27] in the probe approximation.
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expected generically. Furthermore for b = c/3 these two terms combine with each other to give
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3/2
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In this case the leading order contribution to all soft terms comes from F
T

. Since at the mini-

mum a (T + T ⇤) ⇠ logW
0

and all scales are measured in units of M
planck

, this implies the soft

terms are of order m
soft

⇠ m
3/2

/ log
⇣
Mplanck

m

3/2

⌘
. Notice that a Kähler potential of the form K =

�3 log (T + T ⇤ � CC⇤ �XX⇤) satisfies all these conditions and therefore in this case all soft terms

will be subdominant with respect to the gravitino mass and other e↵ects such as anomaly mediation

should also be considered. This result agrees with the proposal of [55] for soft terms in the KKLT

scenario. A similar cancelation also occurs in the sequestered ‘ultra-local’ case in the LARGE volume

scenario [56].

In summary we can see that both gaugino masses and trilinear A terms are suppressed with respect

to the gravitino mass as m
3/2

/ log
⇣
Mplanck

m

3/2

⌘
. On the other hand, the scalar masses depend on the

precise form of the matter Kähler potential. In some models, they are of order m
3/2

(or larger), in

which case we will have a realization of split supesymmetry. If instead the cancelation mentioned

above occurs, then they are also of order m
3/2

/ log
⇣
Mplanck

m

3/2

⌘
. Further studies of these issues are left

for future work.

5 Discussion

It is rather unusual to encounter a supergravity model with a nilpotent multiplet. In fact, such a

complete supergravity model action with explicit spontaneously broken local supersymmetry was not

even presented in the literature. Some partial work in this direction includes [57] where a proposal

was made how to generalize the global Volkov-Akulov model to a locally supersymmetric one and [58],

where the curved superspace formulation of the VA goldstino theory was studied. However, in both

cases the action as well as the local supersymmetry rules were not presented in a complete form. A

related work was performed in [59] where the leading order d=10 Lagrangian with the coupling of

gravitino to Volkov-Akulov model was studied (see also [60] for follow-up work.). A d=4 supergravity

with nilpotent multiplet is not available in the textbooks and the complete fermion part of it is not

known.

The fact that the globally supersymmetric VA action in the form (2.12) as well as in the form (2.13)

has a negative constant �M2 in the action is well known. However, only when VA goldstino has a

consistent coupling to gravity, this term in the action becomes �p�gM2 and indicates a contribution

to a positive cosmological constant. It was shown in [2] that when anti-D3-brane is coupled to d=10

supergravity compactified to d=4, indeed, such a term is present and leads to a KKLT uplift. A

generalization of this argument in the setting where also fermions are present on the world-volume

of the anti-brane was given in [4]. However, the supersymmetry on the anti-D3-brane on top of the

O3-plane still has a global nature, see eq. (2.11) where ⇣ is the space-time independent fermionic

parameter.
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SUSY Breaking in LVS 

•  Fluxes break SUSY 
 
•  In EFT: F-terms of Kahler moduli (plus 

subdominant FS, FU ) 
 
•  Uplifting only relevant if cancellations 

(sequestering)  (anomaly mediation 
subdominant). 

•  Several scenarios studied  + nilpotent 



   Compactification   
 
 
 



KKLT LVS

Soft term D3 D3

M1/2 ± �
3

2aV2/3

�
m3/2 ±

⇣
3s3/2⇠
4V

⌘
m3/2

m2
0

⇣
s3/2⇠
4V

⌘
m2

3/2

⇣
5s3/2⇠
8V

⌘
m2

3/2

Aijk �(1� s@s log Yijk)M1/2 �(1� s@s log Yijk)M1/2

Table 1. Summary of different soft terms for the visible sector on D3 branes for both KKLT and
LVS scenarios. Notice the similarity of the expressions despite the difference in origin for soft terms.
In both cases there is a hierarchy of masses with the ratio ✏ = M

1/2/m0

⌧ 1. For typical numbers
we have ✏ ⇠ 1/50 for KKLT and ✏ ⇠ 10

�2 � 10

�3 for LVS, illustrating a version of mini-split
supersymmetry.

dark matter candidates. In the KKLT scenario, the scalars are around 50 times heavier than
gauginos and the dark matter candidates depend on how much anomaly mediation dominates.
On the one hand, it could have a compresed spectrum with dark matter is higgino like or a
mixture higgsino-bino. Or on the other hand it could be anomaly dominated and then, also
wino like dark matter is possible.

Our description of soft breaking terms treats in a unified way both the KKLT and LVS cases,
with similar expressions determining the structure of soft terms. The different physical properties
of both scenarios manifest only after writing the explicit values of the flux superpotential W

0

and
the volume V. We summarise the structure of soft terms for matter on D3-branes for both KKLT
and LVS in Table 1, under the assumption that the Kähler potential takes the logarthmic form
(2.9).7

In summary, including also the study of the visible sector living on D7-branes presented in
Appendix ?? and summarised in Table ??, there are four distinct scenarios, depending whether the
visible sector lives on D3 or D7-branes and on the moduli stabilisation mechanism (KKLT or LVS).
These may be subject to strong constraints in the not too far a future by LHC and its potential
extensions and different dark matter searches.

There are several questions left open. A better understanding of the nilpotent superfield
realisation from the full string theory would be interesting. For instance, treating the D3-brane
superfield � and the anti-D3-brane superfield X in the same way (i.e. they shift in the same way
the Kähler coordinate describing the CY volume) reproduces the uplift term only when the anti-
D3-brane is placed in particular points of the warped CY, i.e. at the tip of a throat. It would have
been maybe more intuitive that this would happen for a generic point. A better understanding of
this would be desirable.

The structure of soft terms for the KKLT case is very similar to the one originally found
using other techniques by [13]. However not only our techniques are different but we get non-
vanishing scalar masses only after including ↵0 corrections which were not included in [13]. It

7Notice that the soft terms are non-vanishing only when non-perturbative effects, ↵0 corrections and
the presence of the nilpotent superfield are considered. This is consistent with the existence of a vanishing
supertrace formula recently found in [36] since in that reference those effects were not included.
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KKLT LVS

Soft term D7 D7

M1/2 ± �
1

aV2/3

�
m3/2 ±

⇣
3

4a⌧s

⌘
m3/2

m2
0 (1� 3!)m2

3/2

⇣
9(1��)
16a2⌧2s

⌘
m2

3/2

Aijk
3
2(2�� 1� s@s log Yijk)M1/2 �3(1� �)M1/2

Table 3. Summary of different soft terms for the visible sector on D7-branes for both KKLT and
LVS scenarios. Here ! =

�0

↵0�0
. Also the modular weight � is kept explicitly with values � = 1/2

for D7-branes simplifying the expressions. For D3-branes the leading order structure is given by
! = 1/3,� = 1.

Hence, the scalar masses at the dS minimum are given by

m2

=

9(1� �)

(4as⌧s � 1)

2

m2

3/2 . (B.21)

Concering the gaugino masses, the gauge kinetic function is f = Ts and hence they are dominated
by the FTs :

M = ± 3

4as⌧s � 1

m
3/2 , (B.22)

where the relative sign ± refers to the choice of W
0

? 0. Notice that the relation between the
scalars and the gauginos is given by

m2

= (1� �)M2 . (B.23)

Finally the trilinears can be written as

Aijk = �3(1� �)M . (B.24)

For the case of D7-branes, � = 1/2 and hence

m2

=

1

2

M2 and Aijk = �3

2

M . (B.25)

Cosmological and phenomenological observations

The mass of the lightest modulus is

m2

V = 5as⌧s
s3/2⇠

V m2

0

(B.26)

one can see that the bound in order to avoid the cosmological moduli problem is

m
0

& 10

3

TeV . (B.27)

In this scenario, the gauginos are of the same order as the scalars. Hence all the sparticles are at
MSUSY & 10

3 TeV. The higgsinos will be of the order µ ⇠ 10 TeV (if one is able to saturate the
last bound) due to the one loop mass contribution induced by the bino and the wino. Therefore,
this scerario would need of R-parity violation to avoud dark matter overproduction, and non of the
sparticles would be detectable at LHC or at direct or indirect detection experiments.
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Phenomenology 



KKLT Phenomenology 

•  D3: Anomaly  vs α’ effects (tachyons?) 
•  D7: 
•  Modulus heavier than gravitino 

(gravitino problem) 
•  Gaugino masses: suppression implies 

anomaly mediation is relevant 
(mirage?) 

•  Split spectrum (m0/M1/2~50) 

t-shirt INGL64000
nero e blu navy
stampa davanti e manica sx
in bianco

Figure 1: The standard model on a T-shirt. The first row has the Einstein-Hilbert term for

gravity (� = 2) and the kinetic and topological terms for the gauge fields (� = 1) describing the

electromagnetic, weak and strong interactions. The second line has the kinetic energy for the

matter fields: quarks and leptons � = 1/2 as well as their (Yukawa) couplings to the Higgs field

H (� = 0). The third line is the kinetic and potential energy for the Higgs field.

G3 = F3 � iSH3,

Z
F3 = 2⇡M,

Z
H3 = �2⇡K

m0 ⇠ m3/2 >> m3/2/ log
�
MP lanck/m3/2

�

In order to search for the new physics that will overcome the SM we have to explore experi-

mentally all possibilities, increasing the energy, intensity and reach to the highest possible limits,

the history of science tells us we are bound to find something. For theorists we can follow several

directions:

1. Simplicity. Add the simplest possible component to the SM (e.g. one extra neutral fermion

or boson to be dark matter and/or drive inflation, etc.) and contrast with observations.

This is a way to start at least to eliminate the simplest cases and start building up a more

meaningful theory.

2. Follow your nose. Follow aesthetic arguments (usually subjective) as a guideline (e.g. add

extra symmetries o dimensions to address dark energy, dark matter or the flavour structure

of the SM, consider mechanisms such as the see-saw mechanism to explain smallness of

neutrino masses, etc.).

3. Bottom-up. Use any experimental hint in order to introduce new particles that fit data and

then use as a guide towards model building (e.g. attempts to explain some astrophysical

8



LVS Phenomenology 

•  D7: modulus lighter than soft terms 
(CMP?) 

•  D3: modulus heavier  
•  D3: split SUSY (m0/M1/2~100-1000) 
•  Anomaly mediation sub-subdominant 

(no-scale) 

 



Split SUSY, Take 1:

Higgs 125 GeV
Gauginos 1 TeV

10s-100 TeVScalars, Gravitino, Moduli

⇠ ↵/⇡ ?

• Heavy scalars (10s of TeV) at large tan β: right Higgs mass 
• Loop factor: arises in AMSB (Giudice, Luty, Murayama, 
Rattazzi ’98) and some moduli mediation 

• Late-time gravitino and moduli decays populate nonthermal 
dark matter, e.g. winos (Moroi, Randall ’99; Kane et al.) 

Many recent papers on “Mini-Split”: Arvanitaki et al., Arkani-Hamed et al., …

Split SUSY, Take 2:

Higgs 125 GeV
Gauginos 1 TeV

Scalars

!

Missing step: SUSY breaking
Gravitino

!

Cutoff

Planck scale
!

?

SUSY’s Ladder

Higgs 125 GeV
Gauginos 100s GeV - 1 TeV

Scalars, Volume modulus
!

Gravitino, Moduli
!

String scale
!

Planck scale
!

106 GeV

1010 GeV

1014 GeV

1018 GeV

Possible realization of gravitino decoupling from 10D IIB

A Bottom-up perspective 
M Reece et al
arXiv:1512.04941  



Very few concrete scenarios 

•  Split Supersymmetry   m0~50 M1/2 

                                       m0~1000 M1/2 

    M1/2~ 1 TeV 

 
 
•   High energy SUSY m0~ M1/2~1011 GeV 

•  Mirage (anomaly ~gravity mediation (Choi et al)) 

(Concrete realisation of split susy in a framework including 
landscape, relative scales fixed, matching well with experiments...) 
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h
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Predicted range for the Higgs mass

Split SUSY

High-Scale SUSY

tanb = 50
tanb = 4
tanb = 2
tanb = 1

Experimentally favored

Figure 3: The Higgs mass prediction as a function of the scalar mass scale in Split and High-Scale
Supersymmetry for di↵erent values of tan �, taken from [9].

mass in the context of the MSSM points to a top squark & few TeV, which typically implies a
tuning below the percent level. This may be cured at the expense of going beyond the MSSM,
for example, to the NMSSM or theories with extra gauge groups. The direct superpartner limits,
however, which are now beginning to exceed ⇠1.5 TeV for all colored sparticles [3] except the
stop and sbottom, pose a serious problem for naturalness. The gluino, in particular, is critical for
naturalness for two reasons: first, it is the most abundantly produced, due to its large color charge.
Second, the gluino, if heavy, pulls upward the masses of all the colored sparticles including the
stop, which in turn pulls up the Higgs and the weak scale. This behavior is illustrated in Fig. 1,
where we see that even with a decade of RG running a heavy gluino sucks the squark masses up to
within a factor of two of the gluino mass and the up-Higgs soft mass to within a factor of seven.

In Fig. 2 we show the amount of fine-tuning in Natural SUSY theories where only higgsinos,
stops and gluino are light [5]. We consider only the contributions coming from the higgsino, the
stop and the gluino and assume the higgs mass of 126 GeV is generated at tree-level. This gives
a lower bound to the amount of tuning, which applies to any SUSY model, including MSSM,
NMSSM, �SUSY and models with non-decoupling D-terms. We plot the product of two tunings:
one is the usual tuning for the electroweak vev and the other is the tuning required to keep t̃1
light when m�3 � mt̃1 . From Fig. 2 we see that, given the current gluino search bounds [6], there
is at best ⇠ 10% fine-tuning in the theory even when there is a mere order of magnitude between
the messenger scale ⇤ where the soft terms are generated, and the sparticle mass. The minimal
tuning allowed in the theory deteriorates as ⇤ is increased. It is less than 10% already with a loop
hierarchy between the sparticles and ⇤ (as in low-scale gauge mediation) and drops below 1% in

3

Split and Large Scale SUSY 

Giudice et al 2012 



Cosmology: 
 
 



Kahler+Fibre Inflation 

Stringy realisation of α-attractors 
•  α=2 (fibre inflation) Burgess, Cicoli, FQ (2007) 

 
•  α=(VlnV)-1 (Kahler blow-up inflation)  
•  Conlon, FQ (2006) 

•  ...α=(lnV)-1 (polyinstanton inflation) Cicoli, Pedro, 
Tasinato (2011) 

LV SV1 SV2

C0 5.8 · 10−8 0.012 0.023

C1 292.4 20629.4 39786.9

C2 73.1 5157.35 9946.73

Cup 219.3 1200.8 29840.2

R = C0/C2 8 · 10−10 2.3 · 10−6 2.3 · 10−6

Table 3: Coefficients of the inflationary potential for the various parameter sets

discussed in the text.

2 4 6 8 10 12 !
"

2·10-6

4·10-6

6·10-6

8·10-6

V

Figure 2: V (in arbitrary units) versus ϕ̂, with V and τ3 fixed at their minima. The plot assumes
the parameters used in the text (for which ϕ̂ip ≃ 0.80, ϕ̂end = 1.0, and R ≡ C0/C2 ∼ 10−6).

3.3 Inflationary slow roll

We next ask whether the scalar potential (3.31) can support a slow roll, working in the

most natural limit identified above, with A,C ≪ B and B > 0. As we have seen, this case

also implies 0 < C0 ≪ C1 = 4C2, leaving a potential well approximated by

V ≃ C2
⟨V⟩10/3

[

(3−R)− 4

(

1 +
1

6
R

)

e−κϕ̂/2 +

(

1 +
2

3
R

)

e−2κϕ̂ +R eκϕ̂
]

(3.33)

which uses Cup ≃ C1 − C0 − C2 and C1/C2 ≃ 4, and works to linear order in

R :=
C0
C2

= 2g4s

(
CKK
1 CKK

2

CW
12

)2

≪ 1 . (3.34)

The normalization of the potential may instead be traded for the mass of the inflaton field

at its minimum: m2
ϕ = V ′′(0) = 4

(

1 + 7
6 R
)

C2/⟨V⟩10/3.
In practice the powers of R can be neglected in all but the last term in the potential,

where it multiplies a positive exponential which must eventually become important for
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V~A-Be-√2/3α 



Inflation: Fibre+Kahler 
↵ = 1, r ⇠ 0.13

↵ = 1, r = 3⇥ 10�3

↵ = 1/9, r = 4⇥ 10�4

↵ = 1/3, r = 10�3
N=4$supergravity,$
unit$size$Poincare$disk$

Goncharov:Linde$model$

ns#

log10r#

Starobinsky$model,$
conformal$aAractors$$

↵ = 1, r = 3⇥ 10�3

α=2 fiber inflation 
Cicoli, Burgess, Quevedo 

α<<1 Kahler 
Conlon Quevedo 

From Kallosh 
talk 



After Inflation 



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford
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Genericity assertions:

2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

Inflation

Modulus decay/reheating Present

�1 �1
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After inflation

Moduli and cosmology

Cosmological Moduli ‘Problem’ 

 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford
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the lightest moduli start the Big Bang. 

m� & 3 · 104 GeV .

Moduli and cosmology

Coughlan et al 1983, Banks et al, de Carlos et al 1993 



e.g. After Kahler Inflation 
Explicit computation of Vacuum misalignement 

This gives that �
in

(the minimum during the inflationary epoch) is determined by:

�
1�R

�
�
3/2
in

� 1

2

�
1�R

�
�
1/2
in

� e(�in

��⇤)�
1/2
⇤ � ⇠̂

2P
= 0 . (4.10)

Recall that �⇤ (the minimum of the volume in the post-inflationary epoch) is determined

by (4.6) and hence is a function of ⇠̂
�
P . Thus for a given value of the volume, (4.10)

determines �
in

as a function of R. As discussed in Sec. 3, the existence of a stable minimum

during inflation requires R ⌧ 1. The shift �� = �
in

� �⇤ can be obtained by working in a

perturbative expansion in this parameter. For this, it is useful to write the potential during

the inflationary epoch as:

V
in

(�) = V (�) + �V (�) , (4.11)

with V (�) as given in (4.8) and �V (�) =
3W 2

0

2

e�3�PR�3/2. The shift in the location of the

minimum is then given by:

�� = ��V 0(�⇤)

V 00(�⇤)
= 4R

�⇤ +
ˆ⇠

2P �
1

2⇤

2�⇤ � 1
' 2R�⇤ , (4.12)

where we have made use of the large volume limit in the approximation. Recall that for

Kähler moduli inflation V
in

⇠ 105�106 and for typical values of microscopic parameters

R ⇠ 0.01� 0.1. This gives �� ⇠ 0.1� 1. Note that the volume during the inflationary epoch

is greater than the volume in the post-inflationary epoch (since R > 0) but it is smaller

than the local maximum of the potential (since R ⌧ 1) and therefore the field will roll

towards the local minimum and not to the decompactification minimum after inflation. We

are interested in the displacement of the canonically normalised field which is '
M

pl

=
q

2

3

�.

Thus we conclude:

Y =
�'

M
pl

=

r
2

3
�� ' 2

r
2

3
R�⇤ ' 0.1� 1 , (4.13)

consistent with the e↵ective field theory expectations based mostly on dimensional analysis.

Having obtained the shift in the volume modulus, we can use (3.9) to obtain the shift in the

other Kähler moduli finding:

ai�⌧i ⇡ �� ' 2R�⇤ . (4.14)

Recall that the fields ⌧i are not canonically normalised, while the canonically normalised fields

are given by (3.18). We can easily see that the displacement of the canonically normalised

blow-up modes is of order �� ⇠ M
pl

/
pV ⇠ Ms (i.e. significantly less than M

pl

). Again,

this behaviour is expected as the wave-functions of blow-modes are localised in the internal

dimensions. The small initial displacement together with the fact that the blow-up modes

(during both inflationary and post-inflationary epochs) are much heavier than the Hubble

scale, imply that at the end of inflation they relax to their minimum along with the inflaton

and do not have an e↵ect on the post-inflationary dynamics.

Next, let us compute V
0

to leading order in R. V
0

is the expectation value of V
inf

(�)

during the inflationary epoch. Since both V (�) and its first derivative vanish at �⇤, to leading
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at the end of inflation. Making generic assumptions regarding the reheating epoch, change

in the energy density of the universe during inflation and the scale of inflation, ref. [7] used

(2.2) to find the following preferred range for Ne in the standard cosmological timeline:

Ne = 55± 5 . (2.3)

As discussed in the introduction, the determination of the preferred range of Ne requires the

post-inflationary cosmological history as an input. Thus one expects the preferred range of

Ne in modular cosmology to be di↵erent from the usual range (2.3). Ref. [14] applied the

above mentioned consistency condition to the modular cosmology timeline described in this

section, finding the relation:6

Ne +
1

4
N

mod

+
1

4
(1� 3w

re

)N
re

⇡ 57 +
1

4
ln r +

1

4
ln

✓
⇢⇤
⇢
end

◆
, (2.4)

where N
mod

is the number of e-foldings that the universe undergoes during the epoch of

modulus domination. This corresponds to a second reheating epoch where the equation of

state parameter is w
mod

= 0.7 The number of e-foldings of modulus domination was found

to be:

N
mod

⇡ 4

3
ln

✓p
16⇡M

pl

Y 2

m'

◆
, (2.5)

where Y is the initial displacement of the modulus from its post-inflationary minimum in

Planck units. Eq. (2.4) can be used to obtain the “preferred range” of Ne for modular

cosmology. Making the same generic assumptions as in [7], eq. (2.4) gives the preferred

range for Ne to be: ✓
55� 1

4
N

mod

◆
± 5 . (2.6)

Note that this can be thought of as a lowering of the central value of the preferred range of

Ne by N
mod

/4. This can be clearly seen in Fig. 1 where the comoving horizon is plotted as

a function of the scale factor. The green line represents a standard cosmological evolution:

inflation, reheating, radiation- and matter-dominance. On the other hand, the blue and

red lines represent a cosmological evolution in the presence of moduli: inflation, reheating,

radiation-, moduli-, radiation- and matter-dominance. The di↵erence between the blue and

the red line is in the duration of inflation. If inflation in the presence of light moduli lasts

as in the standard case (red line), the modes which would be entering the horizon today in

6Our notation is slightly di↵erent from that of [14] which used Nk to denote the number of e-foldings

between horizon exit and the end of inflation
7We work under the assumption of sudden thermalisation of the modulus decay products. This is a very

good approximation since the moduli decay when H ⇠ �
mod

. Given that the moduli are only gravitationally

coupled while the decay products have gauge interactions with width �
gauge

, we have �
gauge

> �
mod

. Thus

when the modulus decays we have �
gauge

> H, ensuring a very fast thermalisation process. Note that in

the version of eq. (2.4) derived in [14], a term which captures the e↵ect of this thermalisation epoch was

incorporated. As argued above, here we drop this term since its inclusion has a negligible e↵ect in the

determination of the preferred range of Ne.
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which takes place at the time t
2

. Let us obtain the number of e-foldings of the universe

during this epoch. Using the width of ⌧n given in (3.21), this becomes:

N
mod1

= ln

✓
a(t

2

)

a(t
1

)

◆
=

1

3
ln

✓
⇢⌧n(t1)

⇢⌧n(t2)

◆
' 2

3
ln

✓
H(t

1

)

�⌧n

◆
' 2

3
ln

 
10�1/2V1/2

W 2

0

(lnV)3
!
. (4.21)

With the decay of the ⌧n modulus, the associated energy is converted to radiation. However

the energy associated with the coherent oscillations of the volume modulus continues to evolve

like matter. Note that since the ratio of the energy densities associated with the ⌧n quanta and

the volume modulus remains a constant during the first epoch of matter domination, the ratio

of the radiation energy density to the energy density associated with coherent oscillations of

the volume modulus at t
2

is the same as its value at t
1

given in (4.19). At this stage, the

universe enters an epoch of radiation domination (since ✓2 ⌧ 1). However, as the universe

evolves, the energy density associated with radiation dilutes much faster than the energy

density associated with the coherent oscillations of the volume modulus (as the later dilutes

like matter), and so the universe eventually enters a second epoch of matter domination

which lasts until the decay of the volume modulus. Similar to the estimate for N
mod1

, the

number of e-foldings during the second epoch of matter domination is approximately equal

to:

N
mod2

' 2

3
ln

✓
H(t

eq

)

�V

◆
, (4.22)

where t
eq

is the time at which equality of radiation and matter energy density (associated

with the volume modulus) takes place, while �V is the lifetime of the volume modulus given

in (3.22). To determine the Hubble constant at t
eq

, first note that (4.21) can be used to

determine the Hubble constant at t
2

in terms of N
mod1

as:

H(t
2

) = H(t
1

)

✓
a(t

1

)

a(t
2

)

◆
3/2

= H(t
1

) e�
3

2

N
mod1 ' H(t

1

)W 2

0

(lnV)3
10�1/2V1/2

. (4.23)

In the subsequent evolution, matter-radiation equality is determined by the condition:

⇢
rad

(t
2

)

✓
a(t

2

)

a(t
eq

)

◆
4

= ⇢V(t2)

✓
a(t

2

)

a(t
eq

)

◆
3

. (4.24)

Since ⇢V(t2)
�
⇢
rad

(t
2

) = ✓2, this yields a(t
2

)/a(t
eq

) = ✓2. Thus the energy density at the time

of equality is ⇢(t
eq

) ' ⇢
rad

(t
2

) ✓8 which implies H(t
eq

) ' H(t
2

) ✓4. Combining this result

with (4.23) we obtain:

H(t
eq

) =
H(t

1

)W 2

0

(lnV)3✓4
10�1/2 V1/2

. (4.25)

Finally, combining (3.22), (4.22) and (4.25) we obtain:

N
mod2

⇡ 2

3
ln

✓
16⇡V5/2(lnV)5/2Y 4

10�2

◆
⇡ 2

3
ln

✓
16⇡V5/2Y 4

10P 2R2(lnV)1/2
◆
, (4.26)

where we have used the expression for � as given in (4.16). Eqs. (4.21) and (4.26) determine

N
mod1

and N
mod2

in terms of the microscopic parameters of the compactification (with the
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a standard cosmology (green line) would still be outside the horizon. In order to make these

modes enter the horizon today also in the cosmological evolution with moduli, inflation has

to be shorter (blue line).

0.5 1.0 1.5 2.0 2.5
log(a)

10

11

12

13

14

log(aH)

Figure 1. Comoving horizon (aH)�1 as a function of the scale factor a (the scale is arbitrary). The

green line represents a standard cosmological evolution whereas the blue and red lines describe the

cosmological evolution of our universe in the presence of light moduli. The red history is inconsistent

with present cosmological observations.

As mentioned in the introduction, one can use e↵ective field theory estimates to deter-

mine N
mod

but to compute it explicitly one needs to work in a setting where there is a good

understanding of moduli stabilisation. One of the primary goals of this paper is to emphasise

the importance of working in a concrete moduli stabilised setting in order to determine the

preferred range of Ne. We shall take Kähler moduli inflation as our model for this purpose.

The associated cosmological timeline will be discussed in detail in Sec. 4.2, while here we just

note some important features. In the cosmological timeline there are two epochs of modulus

domination – the first in which the energy density is dominated by inflaton quanta (which

are produced during reheating) and the second in which the energy density is dominated by

coherent oscillations of the volume modulus. Following [14], eq. (2.4) is easily generalised to

the situation in which there are two epochs of modulus domination:8

Ne +
1

4
N

mod1

+
1

4
N

mod2

⇡ 57 +
1

4
ln r +

1

4
ln

✓
⇢⇤
⇢
end

◆
. (2.7)

Notice that each epoch of modulus domination has a contribution which is equal to one fourth

of the number of e-foldings in the epoch. The knowledge of the moduli potential and couplings

will provide us with the ingredients (the magnitude of the initial displacement of the volume

modulus and the widths of the moduli) necessary to determine the number of e-foldings

in the epochs of modulus domination. Another important feature is the contribution from

the term involving the tensor-to-scalar ratio r which in Kähler moduli inflation is extremely

8Again we work under the good assumption of sudden thermalisation of the moduli decay products.
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Figure 2. Scalar spectral index ns in terms of the number of e-foldings Ne. The black dot shows the

value of Ne in a standard cosmological history while the red dot indicates the value of Ne needed in

the presence of a late-time period of modulus domination.

Plugging these results in (2.7) we obtain:

Ne ' 44.65 +
1

4
ln

✓
⇢⇤
⇢
end

◆
' 45 ) ⌧n ' 27.3 and ns ' 0.955 . (4.48)

In summary, the combined e↵ect of having a low value of r and the epoch of modulus domina-

tion is to bring the preferred range of the number of e-foldings to a very low value: Ne ' 45.

Correspondingly, the spectral index becomes ns ' 0.955. We would like to emphasise that

there is a significant shift in the number of e-foldings Ne even for a heavy volume modulus

mass mV ⇠ 108 � 109 GeV. Note that, despite the presence of many parameters (W
0

, ai, �i,

K
cs

), we have been able to extract the relevant information for the region of parameter space

that is consistent with observations and obtain precise information on physically measurable

quantities such as the spectral index ns.

5 Conclusions

In this paper we have studied the inflationary predictions for Kähler moduli inflation. To

do so, we have determined the preferred range of the number of e-foldings between horizon

exit and the end of inflation for the model. This required an analysis of the post-inflationary

history of the universe (in particular we determined the number of e-foldings in the epochs

of modulus domination). The epoch of modulus domination for the volume modulus results

from “vacuum misalignment”. Taking advantage of having knowledge of the moduli stabil-

ising potential in the setup, we have been able to compute explicitly the associated “initial

displacement”. Given that the initial displacement is a key input for analysing the post-

inflationary history of the universe, being able to compute it explicitly should be considered

as an advantage of working in a scenario where there is good control over moduli stabil-

isation. This we believe is the first explicit computation of “initial displacement” caused

by misalignment. The magnitude of the displacement of the volume modulus agrees with
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Figure 1: The lefthand timeline represents the thermal history of the early universe when dark
matter is populated in the thermal bath that emerges shortly after after inflation. The right
timeline represents a possible nonthermal history where dark matter production occurs directly
from scalar decay.

occurs at T
f

' m
X

/20 and g⇤ ⇠ 100, assuming the e↵ective number of degrees of freedom is similar
to that of the Standard Model [39]. The abundance simplifies to

⌦therm

dm

h2 ' 0.12

✓
1.63⇥ 10�26cm3/s

h�vi
◆

. (7)

where we have used GeV�2 · c ' 1.17 ⇥ 10�17 cm3/s. WIMPs with typical speeds (v ' 0.3c) and
electroweak cross-sections (⇡ 1 pb) yield ⌦therm

dm

h2 ' 0.12 in agreement with the data, a coincidence
often called the WIMP miracle.

Simple SUSY models with thermal WIMPs are in growing conflict with collider data and direct
detection experiments [40]. By contrast, nonthermal models posit that dark matter production
occurs at temperatures below standard thermal freeze-out4 leading to dark matter with novel and
unexpected experimental signatures. For example, if a heavy relic comes to dominate the energy
density following inflation and the dark matter particle is one its decay products, the resulting relic
density is still given by (6) but with T = T

r

and g⇤ = g⇤(Tr

), the value at the time of reheating

⌦NT

dm

h2 ' 8.60⇥ 10�11

✓
m

X

g⇤(Tr

)1/2h�viT
r

◆
,

' 0.10
⇣ m

X

100 GeV

⌘✓
10.75

g⇤

◆1/2✓3⇥ 10�23 cm3/s

h�vi
◆✓

10 MeV

T
r

◆
. (8)

The similarity to the thermal freezeout result (6) arises because when the WIMPs are produced
from scalar decay they will rapidly annihilate until their number density reduces to the point where
annihilations can no longer occur. This process is essentially instantaneous (on cosmological time

4If the particles were produced above their freeze-out threshold, they could thermalize via their mutual interactions.
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e.g. Non-Thermal Dark-Matter 
(MSSM) 

•  KKLT: gravitino 
decay 

•  KKLT: D7 Higgsino 
overproduction 

•  KKLT:D3 small 
region allowed 
Higgsino DM 

•  LVS: Volume decay 
•  LVS:D7 Higgsino 

overproduction 
•  LVS: D3: allowed 

region to be 
constrained by 1Ton 
(Xenon, CTA) and 
100TeV (not LHC). 
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Conclusions 

•  Two general scenarios of SUSY 
breaking with computable soft terms 
(fully SUSY EFT with Nilpotent superfield) 

•  KKLT: D7 (similar but not equal to 
previously studied), D3 (all new) 

•  LVS: Similar to previous studies 
•  Explicit (mini) split SUSY 
•  LVS+KKLT Nonthermal Dark matter 
•  Interesting (testable) phenomenology 



Geometry	1	

Recently explicit realisations of a single goldstino superfield were explicitly found for
anti D3 branes in warped throats in fluxed orientifold constructions [9] in which a combina-
tion of fluxes and orientifold projections leave the massless goldstino as the only low-energy
propagating particle and thus justifying the use of a nilpotent superfield X to describe the
presence of the anti brane in the low energy effective field theory.

Notice that in KKLT the low energy effective theory is usually written in terms of the
fields with masses of order or below the gravitino mass. These include open string massless
chiral fields as well as Kahler moduli. The breaking of SUSY by the F term of X induces
a shift in the F term of the Kahler modulus T (with F

T

⌧ F
X

) and therefore the full
goldstino field would be a combination of the fermion in X and the fermion in T , with
dominant X component.

In LVS the situation used to be treated very differently since even in the absence of
the antibrane the volume modulus T

b

breaks supersymmetry by having a nonvanishing F

term (F
Tb 6= 0) induced by the non-vanishing flux superpotential. Including a nilpotent

superfield in the effective action allows to consider the breaking of supersymmetry induced
by fluxes and the one induced by the antibrane on equal footing, the same EFT. Again
the total goldstino will be a combination of the fermion component of X and the one of
the moduli. Even though the dominant component is usually the one from the T

b

field,
for sequestered models the X component is relevant and its contributions to the soft terms
must be properly computed. We will address these issues in sections 4 and 5.

3 Warped Flux Compactifications and Nilpotent Fields

3.1 Geometric Approach

In [1] the 10 dimensional type IIB solution has been studied in presence of non-trivial
background three-form fluxes. The 10D metric is of the form:

ds210 = e2D⌘
µ⌫

dxµdx⌫ + e�2Dg
mn

dymdyn (3.1)

Here e2D(y) ⌘ h�1/2
(y) is the warp factor with h(y) satisfying a Poisson-like equation with

sources coming from three-form fluxes and local (brane/orientifold) sources and g
mn

the
(unwarped) Calabi-Yau metric. For zero fluxes this function becomes a constant. For
non-zero fluxes, it provides a factor in front both the internal and external metric, that
varies over the compact directions. As a result, the compact metric in no-longer CY (only
conformally equivalent to it) and the 4D space-time metric is multiplied by the so-called
warp factor. The warp factor acts as a redshift factor for objects localized in the compact
directions in regions where e�2D is large. In these regions, points that were closed in the
unwarped CY metric are far away in the physical compact metric. These regions are called
warped throats and their geometry are close to the KS throat.

In order to include the explicit dependence on the overall volume modulus of the
Calabi-Yau reference [7] pointed out that that a constant shift of the warp factor e4D leaves
invariant the Poisson equation and can be identified with (a power of) the volume modulus.
Furthermore a rescaling of the Calabi-Yau metric ds2

CY

to a unit-volume fiducial metric
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In order to include the explicit dependence on the overall volume modulus of the
Calabi-Yau reference [? ] pointed out that that a constant shift of the warp factor e4D

leaves invariant the Poisson equation and can be identified with (a power of) the volume
modulus. Furthermore a rescaling of the Calabi-Yau metric ds2

CY

to a unit-volume fiducial
metric ds2

CY0
given by ds2

CY

= �ds2
CY0

can be compensated by a rescaling of the warp factor
e2D = �e2A. The warped metric can then be written schematically as:

ds210 = V1/3
⇣
e�4A

+ V2/3
⌘�1/2

ds24 +
⇣
e�4A

+ V2/3
⌘1/2

ds2
CY0

(3.2)

which is equivalent to:

ds210 =

✓
1 +

e�4A

V2/3

◆�1/2

ds24 +

✓
1 +

e�4A

V2/3

◆1/2

ds2
CY

(3.3)

Here ⌦

2
=

⇣
1 +

e

�4A

V2/3

⌘�1/2
is the redshift factor that in a highly warped region defined

by e�4A � V2/3, behaves as ⌦ ⇠ eAV1/6 ⌧ 1.
Let us see the properties of this metric.

• In the large volume limit V2/3 � e�4A the metric becomes the standard unwarped
metric ds210 = ds24 + V1/3ds2

CY0
= ds24 + ds2

CY

.

• In the largely warped regions, where e�2A � V1/3, the internal part of the metric
describing the warped throat becomes close to the Klebanov-Strassler geometry:

ds210 = e2Dw(r)ds24 + e�2Dw(r)
�
dr2 + r2ds2

T

1,1

�
, (3.4)

where approximately e�Dw(r) ⇠ R

r

. This takes its maximal value at the tip of the
throat (r = r0): e�Dw(r0) ⇠ R

r0
, where R is the typical size of the throat. In the
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Let us see the properties of this metric.

• In the large volume limit V2/3 � e�4A the metric becomes the standard unwarped
metric ds210 = ds24 + V1/3ds2
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.

• In the largely warped regions, where e�2A � V1/3, the internal part of the metric
describing the warped throat becomes close to the Klebanov-Strassler geometry:
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�
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where the last approximation is valid if the volume of the throat is small compared
to the (large) volume of the CY.

• The tension of an anti-D3 brane in a GKP background induces a positive term in the
scalar potential. This term depends on the anti-D3 position r0 in the compact space,
i.e. if it is in a warped or unwarped region. In the first case it is redshifted:

T3

Z
d4x

p�g4 ⇠ M4
s

V2/3

e�4A(r0)
+ V2/3

⇠
(

e

4A(rD3)

V4/3 for e�4A(r0) � V2/3

1
V2 for V2/3 � e�4A(r0)

(3.7)

where we are using T3 = 8⇡3g
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/V2. Notice that the first expression
gives the uplifting term (2TD3 ) in KKLMMT and the second one gives the one
written in KKLT.
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1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:
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1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:

S = �T3

Z
d

4
x

p
�g

✓
1

h

p
1� hg

µ⌫

@

µ

r@

⌫

r � q

h

◆
(1.9)

where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.
As we know, in the presence of fluxes the 10D metric is of the form:

ds

2
10 = e

2A
⌘

µ⌫

dx

µ

dx

⌫

+ e

�2A
g

mn

dy

m

dy

n (1.10)

The 5-form field strength F5 = dC4 + ... is:

(F5)
rtx

1
x

2
x

3 =

@e

4A

@r

(1.11)

Rescaling the 6d metric by g

mn

! �g

mn

is compensated by e

2A ! �e

2A which for � = V1/3

is what introduces the V1/3 factor in the 4d part of the metric and gives rise to the famous
V�4/3 in the uplift term. But this also scales the solution for C4 by C4 ! �

2
C4. Recall that

1

Recently explicit realisations of a single goldstino superfield were explicitly found for
anti D3 branes in warped throats in fluxed orientifold constructions [9] in which a combina-
tion of fluxes and orientifold projections leave the massless goldstino as the only low-energy
propagating particle and thus justifying the use of a nilpotent superfield X to describe the
presence of the anti brane in the low energy effective field theory.

Notice that in KKLT the low energy effective theory is usually written in terms of the
fields with masses of order or below the gravitino mass. These include open string massless
chiral fields as well as Kahler moduli. The breaking of SUSY by the F term of X induces
a shift in the F term of the Kahler modulus T (with F

T

⌧ F
X

) and therefore the full
goldstino field would be a combination of the fermion in X and the fermion in T , with
dominant X component.

In LVS the situation used to be treated very differently since even in the absence of
the antibrane the volume modulus T

b

breaks supersymmetry by having a nonvanishing F

term (F
Tb 6= 0) induced by the non-vanishing flux superpotential. Including a nilpotent

superfield in the effective action allows to consider the breaking of supersymmetry induced
by fluxes and the one induced by the antibrane on equal footing, the same EFT. Again
the total goldstino will be a combination of the fermion component of X and the one of
the moduli. Even though the dominant component is usually the one from the T

b

field,
for sequestered models the X component is relevant and its contributions to the soft terms
must be properly computed. We will address these issues in sections 4 and 5.

3 Warped Flux Compactifications and Nilpotent Fields

3.1 Geometric Approach

In [1] the 10 dimensional type IIB solution has been studied in presence of non-trivial
background three-form fluxes. The 10D metric is of the form:

ds210 = e2D⌘
µ⌫

dxµdx⌫ + e�2Dg
mn

dymdyn (3.1)

Here e2D(y) ⌘ h�1/2
(y) is the warp factor with h(y) satisfying a Poisson-like equation with

sources coming from three-form fluxes and local (brane/orientifold) sources and g
mn

the
(unwarped) Calabi-Yau metric. For zero fluxes this function becomes a constant. For
non-zero fluxes, it provides a factor in front both the internal and external metric, that
varies over the compact directions. As a result, the compact metric in no-longer CY (only
conformally equivalent to it) and the 4D space-time metric is multiplied by the so-called
warp factor. The warp factor acts as a redshift factor for objects localized in the compact
directions in regions where e�2D is large. In these regions, points that were closed in the
unwarped CY metric are far away in the physical compact metric. These regions are called
warped throats and their geometry are close to the KS throat.

In order to include the explicit dependence on the overall volume modulus of the
Calabi-Yau reference [7] pointed out that that a constant shift of the warp factor e4D leaves
invariant the Poisson equation and can be identified with (a power of) the volume modulus.
Furthermore a rescaling of the Calabi-Yau metric ds2

CY

to a unit-volume fiducial metric
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GKP [? ] compactifications, at the tip of the throat we have r0 / V1/6z1/3`
s

⇠
V1/6e

� 2⇡K
3gsM `

s

. Hence
e4Aw(r0) ⇠ e

� 8⇡K
3gsM ⌘ e�4↵ , (3.5)

where g
s

is the string coupling and K and M the integer fluxes on the two dual
three-cycles that define the throat.

• The warped volume V
W

that relates the 10D and 4D Planck masses is given by:

V
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=
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p
g
CY

e�4D
= V

Z
d6y

p
g
CY0

✓
1 +

e�4A

V2/3

◆
⇠ V , (3.6)

where the last approximation is valid if the volume of the throat is small compared
to the (large) volume of the CY.

• The tension of an anti-D3 brane in a GKP background induces a positive term in
the scalar potential. This term depends on the anti-D3 position rD3 in the compact
space, i.e. if it is in a warped or unwarped region. In the first case it is redshifted:

T3

Z
d4x

p�g4 ⇠ M4
s

V2/3

e�4A(rD3)
+ V2/3

⇠
(

e

4A(rD3)

V4/3 for e�4A(rD3) � V2/3

1
V2 for V2/3 � e�4A(rD3)

(3.7)

where we are using T3 = 8⇡3g
s

↵02 ⇠ M4
s

⇠ M4
p

/V2. Notice that the first expression
gives the uplifting term (2TD3 ) in KKLMMT and the second one gives the one
written in KKLT.

• In the presence of both large warping and large volume it is important to understand
the conditions under which an effective field theory is valid. Large warping implies
e�4A � V2/3. However the massive string states of an anti brane sitting at the tip of
a throat are redshifted to lower masses and could be lighter than the gravitino mass
m3/2 ⇠ 1/V invalidating the use of a low energy effective field theory that neglects
these states. Their mass being the string scale M

s

⇠ V�1/2 redshifted by the redshift
factor ⌦ = V1/6eA implying [? ? ? ]:

Mw

s

⇠ ⌦M
s

⇠ V1/6eA

V1/2
=

eA

V1/3
� W0

V
=) e�A ⌧ V2/3 ⌧ e�4A (3.8)

3.2 Brane/anti-brane Dynamics

The D3 brane is attracted by the anti D3 brane at the tip of the throat. Geometrically the
D3 brane back-reacts on the geometry by modifying the harmonic form. If the position of
the D3 brane is r1 and that of the antibrane is r0 with r0 ⌧ r1, R . The back reaction of
the D3 brane on the geometry induces an r1 dependence on the warp factor:

h(r, r1) = h(r) + �h(r, r1) (3.9)
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CY
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CY0

can be compensated by a rescaling of the warp factor
e2D = �e2A. The warped metric can then be written schematically as:
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is the redshift factor that in a highly warped region defined

by e�4A � V2/3, behaves as ⌦ ⇠ eAV1/6 ⌧ 1.
Let us see the properties of this metric.

• In the large volume limit V2/3 � e�4A the metric becomes the standard unwarped
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where the last approximation is valid if the volume of the throat is small compared
to the (large) volume of the CY.

• The tension of an anti-D3 brane in a GKP background induces a positive term in the
scalar potential. This term depends on the anti-D3 position r0 in the compact space,
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1 Effective Field Theory of KKLMMT Revisited
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1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:

S = �T3
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where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.
As we know, in the presence of fluxes the 10D metric is of the form:

ds

2
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dx
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The 5-form field strength F5 = dC4 + ... is:
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1
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(1.11)

Rescaling the 6d metric by g

mn

! �g

mn

is compensated by e

2A ! �e

2A which for � = V1/3

is what introduces the V1/3 factor in the 4d part of the metric and gives rise to the famous
V�4/3 in the uplift term. But this also scales the solution for C4 by C4 ! �

2
C4. Recall that

1

Redshift factor 
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where the first term comes from the DBI action and the second term from
the Chern-Simons action
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tx1x2x3 . For a D3 brane q = 1 the non-derivative
interaction cancels as should be for BPS states. For a brane/antibrane system,
q = �1 the two terms add and give rise to the vacuum energy plus Coulomb
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�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that
introduced the volume dependence in the warp factor also acts on the 5-form
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for � = V1/3 is what introduces the V1/3 factor in the 4d part of the metric
and gives rise to the famous V�4/3 in the uplift term. But this also scales the
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where g
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is the string coupling and K and M the integer fluxes on the two dual
three-cycles that define the throat.
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where the last approximation is valid if the volume of the throat is small compared
to the (large) volume of the CY.

• The tension of an anti-D3 brane in a GKP background induces a positive term in
the scalar potential. This term depends on the anti-D3 position rD3 in the compact
space, i.e. if it is in a warped or unwarped region. In the first case it is redshifted:
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gives the uplifting term (2TD3 ) in KKLMMT and the second one gives the one
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• In the presence of both large warping and large volume it is important to understand
the conditions under which an effective field theory is valid. Large warping implies
e�4A � V2/3. However the massive string states of an anti brane sitting at the tip of
a throat are redshifted to lower masses and could be lighter than the gravitino mass
m3/2 ⇠ 1/V invalidating the use of a low energy effective field theory that neglects
these states. Their mass being the string scale M

s

⇠ V�1/2 redshifted by the redshift
factor ⌦ = V1/6eA implying [? ? ? ]:
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3.2 Brane/anti-brane Dynamics

The D3 brane is attracted by the anti D3 brane at the tip of the throat. Geometrically the
D3 brane back-reacts on the geometry by modifying the harmonic form. If the position of
the D3 brane is r1 and that of the antibrane is r0 with r0 ⌧ r1, R . The back reaction of
the D3 brane on the geometry induces an r1 dependence on the warp factor:

h(r, r1) = h(r) + �h(r, r1) (3.9)
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where the first term comes from the DBI action and the second term from the Chern-Simons
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tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h
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We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
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• In the presence of both large warping and large volume it is important to understand
the conditions under which an effective field theory is valid. Large warping implies
e�4A � V2/3. However the massive string states of an anti brane sitting at the tip of
a throat are redshifted to lower masses and could be lighter than the gravitino mass
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3.2 Brane/anti-brane Dynamics
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When we move the D3-brane outside the throat, the potential (3.11) is still valid, with
now r1 being the distance between the D3-brane and the anti-D3-branes measured with the
unwarped CY metric. If the D3-brane is at a generic point in the CY manifold, the distance
from the anti-D3-brane is r1 ⇠ V1/6`

s

and '1 = r1M
2
s

= V1/6V�1/2M
p

= V�1/3M
p

. If we
now plug these numbers into (3.13) we obtain
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Figure 1. Cartoon description of the geometry and brane set-up

3.3 Supersymmetrising KKLMMT

Now we will attempt to capture the couplings of subsection 3.2 in terms of a supergravity
action with a nilpotent field. Following the recent work in which the standard KKLT uplift
was captured by the F-term coming from the nilpotent goldstino superfield [8]. We will
add to this the coupling of the antibrane field to the moving D3 brane. Let us consider the
simplest case of moduli stabilisation with all complex structure moduli and dilaton stabilised
by fluxes and concentrate on the Kahler moduli and matter fields. The effective field theory
at low energies for one Kahler modulus T with the volume determined by V ⇠ (T +T ⇤

)
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)

3/2,
one matter field representing the position of a D3 brane and the corresponding anti-D3
brane superfield X. The Kahler potential:

K = �3 log (T + T ⇤ � �⇤��X⇤X) (3.14)

The superpotential can be written as:

W = W0(U, S) +W
np

(U, S, T ) + ⇢(U, S,�)X (3.15)
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The contribution of the X superfield is very simple to extract. For the case � = 0 this was
done in [8, 9]. The term:

V
FX = eKK�1

XX

⇤ kD
X

Wk2 = V�2V2/3
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@X

����
2

=

|⇢|2
V4/3

⇠ |⇢|2
(T + T ⇤

)

2 (3.16)

If ⇢ were constant ⇢ = ⇢0 this term would provide the ‘constant’ uplifting term e�4↵/(T +

T ⇤
)

2 precisely as in KKLMMT. From which we could read |⇢0| ⇠ e�2↵. Notice that from
[1] the complex structure modulus that defines the throat is determined by U ⇠ e�3↵/2

suggesting that ⇢0 ⇠ U2/3 (U was called z in [1]) 1.
In the presence of the moving brane the interaction term should also be possible to

reproduce from a � dependence.
Writing

⇢ = ⇢0 + �⇢ = ⇢0 + ⇢1�+ ⇢2�
2
+ · · · (3.17)

with ⇢0, as before, is the � independent part. To find �⇢ we compare the two expressions
(3.13) and (3.16) but need to work with the canonically normalised field in the supergravity
case also which is defined by:

'̂ =

�p
3(T + T ⇤

)

⇠ �

V1/3
(3.18)

and ' is essentially the real part of '̂. We can compare the expansion of equation (3.13)
with the following expansion of (3.16):

V
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V4/3

�|⇢0|2 + 2Re(⇢⇤0⇢1�) + |⇢1|2|�|2 + 2Re(⇢⇤0⇢2�
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) + · · · � (3.19)

⇠ 1
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Re(⇢⇤0⇢1'̂) + V2/3|⇢1|2|'̂|2 + 2V2/3
Re(⇢⇤0⇢2'̂

2
) + · · ·

⌘

Comparing the two expressions we realise that the volume dependence exactly cancels and
that

|⇢0| ⇠ e�2↵, |⇢1| ⇠ |⇢2| ⇠ e�6↵, · · · (3.20)

with ' essentially the modulus of '̂. We can then say that just as the � independent part
of the action captures the presence of the antibrane in KKLT from a supersymmetric action
for the field X, adding the � dependence in the superpotential captures the couplings of
the mobile D3 brane with the antibrane in KKLMMT in terms of a supersymmetric action.

In a more general case the Kahler potential should be written in an expansion of the
nilpotent and matter fields as:

K = �2 logV +AXX⇤
+B��⇤

+ CXX⇤��⇤
+ · · · (3.21)

with A,B,C functions of the moduli fields. In particular if we write

A =

a

V2/3
+ b(U,U⇤

) (3.22)

1
Notice that precisely U2/3

is the radius of the corresponding three-cycle.
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Slightly	more	general	
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with ' essentially the modulus of '̂. We can then say that just as the � independent part
of the action captures the presence of the antibrane in KKLT from a supersymmetric action
for the field X, adding the � dependence in the superpotential captures the couplings of
the mobile D3 brane with the antibrane in KKLMMT in terms of a supersymmetric action.

In a more general case the Kahler potential should be written in an expansion of the
nilpotent and matter fields as:

K = �2 logV +AXX⇤
+B��⇤

+ CXX⇤��⇤
+ · · · (3.21)

with A,B,C functions of the moduli fields. In particular if we write

A =

a

V2/3
+ b(U,U⇤

) (3.22)

1
Notice that precisely U2/3

is the radius of the corresponding three-cycle.
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1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:

V = K

�1
0

����
@W

@X

����
2

=

|⇢|2

K0
� 0 (1.1)

W = W0 +Wmatter +W

np

+ ⇢X (1.2)

Vuplift =
|⇢|2

c(T + T

⇤
)

n+3
(1.3)

Vuplift =
D

2

(T + T

⇤
)

↵

=

D

2

V2↵/3

⇢
↵ = 3 KKLT

↵ = 2 KKLMMT

(1.4)

z

1/3
= e

A

= e

� 2⇡K
3gsM ⌘ e

�↵ (1.5)

¯

4

10

10

G3

W =

Z
G ^ ⌦ (1.6)

W

np

=

X
A

i

e

�aiTi (1.7)

ds

2
10 = e

2Dw
ds

2
4 + e

�2Dw
�
dr

2
+ r

2
ds

2
T

1,1

�
(1.8)

A =

a

V2/3
+ b(z, z

⇤
) =

a

V2/3
+ e

4A (1.9)

1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:

S = �T3

Z
d

4
x

p
�g

✓
1

h

p
1� hg

µ⌫

@

µ

r@

⌫

r � q

h

◆
(1.10)

where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.
As we know, in the presence of fluxes the 10D metric is of the form:

ds

2
10 = e

2A
⌘

µ⌫

dx

µ

dx

⌫

+ e

�2A
g

mn

dy

m

dy

n (1.11)

The 5-form field strength F5 = dC4 + ... is:

(F5)
rtx

1
x

2
x

3 =

@e

4A

@r

(1.12)

1

When we move the D3-brane outside the throat, the potential (3.11) is still valid, with
now r1 being the distance between the D3-brane and the anti-D3-branes measured with the
unwarped CY metric. If the D3-brane is at a generic point in the CY manifold, the distance
from the anti-D3-brane is r1 ⇠ V1/6`

s

and '1 = r1M
2
s

= V1/6V�1/2M
p

= V�1/3M
p

. If we
now plug these numbers into (3.13) we obtain

V ⇠ M4
p

e�4↵

V4/3

✓
1� e�4↵

✓
1� 4V1/3 '

M
p

+ 10V2/3 '2

M2
p

+ · · ·
◆◆

. (3.13)

ν1/6%

R% D3%

D7%

D3%

Figure 1. Cartoon description of the geometry and brane set-up

3.3 Supersymmetrising KKLMMT

Now we will attempt to capture the couplings of subsection 3.2 in terms of a supergravity
action with a nilpotent field. Following the recent work in which the standard KKLT uplift
was captured by the F-term coming from the nilpotent goldstino superfield [8]. We will
add to this the coupling of the antibrane field to the moving D3 brane. Let us consider the
simplest case of moduli stabilisation with all complex structure moduli and dilaton stabilised
by fluxes and concentrate on the Kahler moduli and matter fields. The effective field theory
at low energies for one Kahler modulus T with the volume determined by V ⇠ (T +T ⇤

)

3/2,
one matter field representing the position of a D3 brane and the corresponding anti-D3
brane superfield X. The Kahler potential:

K = �3 log (T + T ⇤ � �⇤��X⇤X) (3.14)

The superpotential can be written as:

W = W0(U, S) +W
np

(U, S, T ) + ⇢(U, S,�)X (3.15)

– 7 –we can see that the uplift term eKK�1
XX

⇤ |⇢0|2 can be written as:

V
up

= eKK�1
XX

⇤ |⇢0|2 = |⇢0|2
V2

V2/3

a+ bV2/3
(3.23)

Since b is a function of complex structure moduli it can compared with V2/3 depending on
the warping. If b ⌧ V�2/3 as for instance b ⇠ U4/3 ⇠ e4A then we recover the warped
KKLMMT uplift. If however volume dominates over warping, bV2/3 � a then we recover
the unwarped uplifting originally proposed in KKLT. Notice that for b ⇠ e4A equation 3.23
reproduces exactly the general result of 3.7 interpolating between KKLT and KKLMMT
uplift.

3.4 Stability of D-branes at singularities: Bounds on Soft Masses

Let us consider the situation in which the D3-brane is at a singularity of the CY three-fold.
At the singularity the D3-brane splits into a set of fractional branes with non-abelian gauge
groups and chiral fermions. This can accommodate the visible MSSM sector. If the moduli
are fixed in a non-supersymmetric vacuum, soft SUSY breaking terms are generated, giving
a mass to the field '̂ that could to stabilise it at zero. On the other hand the presence of
an anti-D3-brane generates a Coulomb attraction for the D3-branes. If this is too strong, it
can destabilize the location of the minimum. When this happens, the fractional D3-branes
can recombine into a normal D3 brane that will start rolling towards the anti-D3-brane. As
a result, the MSSM structure is destroyed. We now work out what are the bounds on the
solft masses such that this does not happen.

The '̂ dependent part of the potential is of order:

�V ('̂) =
e�8↵

V '̂M3
p

+m2
0|'̂|2 (3.24)

where we have assumed that the soft term mass is dominant on the quadratic negative part
coming from (3.13), i.e. that m2

0 � e

�8↵

V2/3 M
2
p

. The minimum of the potential (3.24) is at

'̂ ⇠ e�8↵M3
p

2m2
0V

(3.25)

Physically this non-zero vev for '̂ means that the D3-brane position is shifted from the
original position by �r = '̂`2

s

. If this value is greater than the typical string length scale
then it would mean that the presence of the antibrane substantially affects the physics of
the D3 brane system. Hence we need to impose �r ⌧ `

s

.
In order to have a de Sitter minimum, the term e�4↵/V4/3 has to be of the same

order as W 2
0 /V2 in KKLT and as 1/V3 in LVS. Implying that the warp factor is of order

respectively e�4↵ ⇠ W 2
0 /V2/3 and e�4↵ ⇠ 1/V5/3. When this happens, we have

�r ⇠ e�8↵M3
p

2m2
0V

`2
s

=

M2
p

m2
0

e�8↵

2V1/2
`
s

=

8
>><

>>:

M

2
p

m

2
0

W

4
0

2V11/6 `s for KKLT

M

2
p

m

2
0

1
2V23/6 `s for LVS

(3.26)
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Reproduces Giddings-Maharana uplift 
(b=e4A)! 



LVS vs KKLT 
•  W0~0.1-100 
•  AdS non SUSY 
•  Minimum: perturbative in 

big cycle vs non-perturb. 
in small cycle 

•  Uplift:anti D3 branes, D-
terms... 

•  Small parameter = 1/V 
•  SUSY broken by fluxes 
•  Many moduli: need 

h21>h11>1 + one blow up, 
the rest by loop effects/
D-terms 

 

•  W0<<1 
•  AdS SUSY 
•  Minimum: tree-level vs 

non-perturbative 
•  Uplift: anti D3 branes...(no 

D-terms) 
•  Small parameter W0 
•  SUSY broken by uplifting 

mechanism 
•  Many moduli: non-

perturbative effects for 
each of them or ... 



SUSY Challenges for String 
Scenarios 

•  Explicit N=1 Compactification 

•  Concrete SUSY breaking mechanism 

•  Moduli Stabilisation (small cc)                                 
(+ avoid CMP (plus gravitino+ dark radiation excess,etc!)) 

•  Chiral visible sector 

•  Computable soft terms 


