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A Complete Standard Model of Particle Physics

The SM is a quantum field theory that describes fundamental matter and
their (strong and EW) interactions

I With the discovery of the Higgs Boson
at the LHC in 2012, the last missing
piece of the SM has been found

I We can now directly constraint all 19
parameters of the model
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I Global fits of observables can now be
achieved, and theory/experiment
comparisons can hint for problems
with the SM

I The example figure shows a
multidimensional fit by the Gfitter

collaboration on the observables MW ,
mt and MH
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Higgs Phenomenology - LHC Run I

I Signal strengths for production
mechanisms

I Includes gluon fusion, VBF,
Higgsstrahlung and tt̄H

I ATLAS, CMS and combined
results shown

Parameter value
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arXiv:1606.02266 [hep-ex]

I Signal strengths for decay
processes

I Shown are Higgs decaying into
pairs of vector bosons and to
fermion pairs

I Excellent overall agreement,
though large uncertainties Parameter value

1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

bbµ

ττµ

WWµ

ZZµ

γγµ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

4 / 38



Higgs Phenomenology - LHC Run I

I Signal strengths for production
mechanisms

I Includes gluon fusion, VBF,
Higgsstrahlung and tt̄H

I ATLAS, CMS and combined
results shown

Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

µ

ttH
µ

ZH
µ

WH
µ

VBF
µ

ggF
µ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

arXiv:1606.02266 [hep-ex]

I Signal strengths for decay
processes

I Shown are Higgs decaying into
pairs of vector bosons and to
fermion pairs

I Excellent overall agreement,
though large uncertainties Parameter value

1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

bbµ

ττµ

WWµ

ZZµ

γγµ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

4 / 38



Higgs Phenomenology - LHC Run I

Particle mass [GeV]
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SM Cross Sections at ATLAS
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I Many processes
studied

I Overall
(impressive)
th/ex agreement

I Jet towers deeply
testing QCD

I Smallest xs’s
from V V ′ + 2
jets

I Similar results
from CMS
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A Tale of Troublesome Success
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The Shortcomings of the SM

I Can we understand the structure of the SM symmetry group
and its matter content?

I Why the mass hierarchies in the fermion sector and other
peculiarities of its parameters?

I Why the hierarchy between the electroweak scale and the
Planck scale?

I Dark Sectors: cosmological and astrophysical observations
imply dark matter and dark energy for which the SM has no
candidates

I How can we understand the universe’s large baryon asymmetry

I Can we consistently include gravity within the SM?

Many Beyond the SM models have been proposed through the
years to deal with some of these problems: Supersymmetry, Extra
dimensions, Composite Theories, Strings, Axions, Extra fields, etc.
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Searching for Answers: Dark Matter Experiments

SuperCDMS: a cryogenic dark matter search
experiment, located at SNOLAB, Ontario, Canada

CRESST: a cryogenic superconducting thermal
dark matter experiment, located at Gran Sasso, Italy

PandaX: a xenon based dark matter search
experiment, located at CJPL, Sichuan, China

. . .
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Searching for Answers: Dark Energy Surveys

BOSS	
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Searching for Answers with Collider Experiments

LHC: proton-proton collider up to a design
energy of 14 TeV, CERN, Geneva

ILC: proposed Int. Linear Collider (0.5-1 TeV)
with possible hosts Japan, Europe or the USA

FCC-CEPC: proposed future circular colliders to reach
∼ 100 TeV in energy, possibly at CERN and China
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Searches at Hadron Colliders

Clear New Signals

vs.

New Signal Excesses
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Bumps and Excesses at Colliders

When a heavy state is produced,
that couples to SM particles, there
is the possibility of a discovery by
characterizing a peak on a related
observable. Detection depends on
the relative size of the signal and
backgrounds

Unlike resonance signals, there are many
BSM scenarios that enhance certain
observables in a smooth way. In these
cases a precise knowledge of the
background is necessary
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Searches at Hadron Colliders

Clear New Signals

vs.
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The Brief Story of a Diphoton Resonance

I On Dec. 15, 2015 the ATLAS and
CMS collaboration reported on first
results from Run II at

√
s = 13 TeV

I Both collaboration saw a curious
excess of diphoton events at around
Mγγ = 750 GeV

I The statistical significance of the
deviations was above 3 sigmas
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ways the deviation
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August Dismissal of a Fluctuation

But in Aug. 5, 2016 both collaborations revisited the measurement with
more than 4 times the amount of data
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I The evidence of a resonance observed earlier was deemed a
fluctuation of the background

I No matter how big data sets are, always in tails of distributions fake
excesses can appear
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Few Comments on the Experience

I Clear signatures are simplest to analyze, though dataset size
important

I Eager community to find hints of BSM

I Precision Calculations are keen even for clear signatures, both
to cross check experimental fits techniques and for finding
O(1− 5%) effects
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The Mγγ Spectrum at NNLO QCD

With a precise calculation by Campbell, Ellis, Li and Williams the
experimental fits were validated
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Searches at Hadron Colliders

Clear New Signals

vs.

New Signal Excesses
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Excesses in SUSY Searches
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I As an example, in many SUSY models heavy
colored particles are pair produced

I They produce long decay chains of jets and
leptons

I In the end heavy neutral stable particles scape the
detector, producing missing energy

pllT is one of the employed
observables, with possible
NP modifying the associ-
ated distributions
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pllT is one of the employed
observables, with possible
NP modifying the associ-
ated distributions
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Summary Plots for SUSY Exclusion Limits
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MSUGRA/CMSSM 0-3 e, µ /1-2 τ 2-10 jets/3 b Yes 20.3 m(q̃)=m(g̃) 1507.055251.85 TeVq̃, g̃

q̃q̃, q̃→qχ̃0
1 0 2-6 jets Yes 13.3 m(χ̃0

1)<200 GeV, m(1st gen. q̃)=m(2nd gen. q̃) ATLAS-CONF-2016-0781.35 TeVq̃

q̃q̃, q̃→qχ̃0
1 (compressed) mono-jet 1-3 jets Yes 3.2 m(q̃)-m(χ̃0

1)<5 GeV 1604.07773608 GeVq̃

g̃g̃, g̃→qq̄χ̃0
1 0 2-6 jets Yes 13.3 m(χ̃0

1)=0 GeV ATLAS-CONF-2016-0781.86 TeVg̃

g̃g̃, g̃→qqχ̃±1→qqW±χ̃0
1 0 2-6 jets Yes 13.3 m(χ̃0

1)<400 GeV, m(χ̃±)=0.5(m(χ̃0
1)+m(g̃)) ATLAS-CONF-2016-0781.83 TeVg̃

g̃g̃, g̃→qq(ℓℓ/νν)χ̃0
1 3 e, µ 4 jets - 13.2 m(χ̃0

1)<400 GeV ATLAS-CONF-2016-0371.7 TeVg̃

g̃g̃, g̃→qqWZχ̃0
1 2 e, µ (SS) 0-3 jets Yes 13.2 m(χ̃0

1) <500 GeV ATLAS-CONF-2016-0371.6 TeVg̃
GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 3.2 1607.059792.0 TeVg̃
GGM (bino NLSP) 2 γ - Yes 3.2 cτ(NLSP)<0.1 mm 1606.091501.65 TeVg̃
GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 m(χ̃0

1)<950 GeV, cτ(NLSP)<0.1 mm, µ<0 1507.054931.37 TeVg̃
GGM (higgsino-bino NLSP) γ 2 jets Yes 13.3 m(χ̃0

1)>680 GeV, cτ(NLSP)<0.1 mm, µ>0 ATLAS-CONF-2016-0661.8 TeVg̃
GGM (higgsino NLSP) 2 e, µ (Z) 2 jets Yes 20.3 m(NLSP)>430 GeV 1503.03290900 GeVg̃
Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃g̃, g̃→bb̄χ̃0
1 0 3 b Yes 14.8 m(χ̃0

1)=0 GeV ATLAS-CONF-2016-0521.89 TeVg̃

g̃g̃, g̃→tt̄χ̃0
1 0-1 e, µ 3 b Yes 14.8 m(χ̃0

1)=0 GeV ATLAS-CONF-2016-0521.89 TeVg̃
g̃g̃, g̃→bt̄χ̃+1 0-1 e, µ 3 b Yes 20.1 m(χ̃0

1)<300 GeV 1407.06001.37 TeVg̃

b̃1b̃1, b̃1→bχ̃0
1 0 2 b Yes 3.2 m(χ̃0

1)<100 GeV 1606.08772840 GeVb̃1

b̃1b̃1, b̃1→tχ̃±1 2 e, µ (SS) 1 b Yes 13.2 m(χ̃0
1)<150 GeV, m(χ̃±1 )= m(χ̃0

1)+100 GeV ATLAS-CONF-2016-037325-685 GeVb̃1

t̃1 t̃1, t̃1→bχ̃±1 0-2 e, µ 1-2 b Yes 4.7/13.3 m(χ̃±1 ) = 2m(χ̃0
1), m(χ̃0

1)=55 GeV 1209.2102, ATLAS-CONF-2016-077117-170 GeVt̃1 200-720 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃0
1 or tχ̃0

1 0-2 e, µ 0-2 jets/1-2 b Yes 4.7/13.3 m(χ̃0
1)=1 GeV 1506.08616, ATLAS-CONF-2016-07790-198 GeVt̃1 205-850 GeVt̃1

t̃1 t̃1, t̃1→cχ̃0
1 0 mono-jet Yes 3.2 m(t̃1)-m(χ̃0

1)=5 GeV 1604.0777390-323 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃0
1)>150 GeV 1403.5222150-600 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 13.3 m(χ̃0
1)<300 GeV ATLAS-CONF-2016-038290-700 GeVt̃2

t̃2 t̃2, t̃2→t̃1 + h 1 e, µ 6 jets + 2 b Yes 20.3 m(χ̃0
1)=0 GeV 1506.08616320-620 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃0
1 2 e, µ 0 Yes 20.3 m(χ̃0

1)=0 GeV 1403.529490-335 GeVℓ̃
χ̃+1 χ̃

−
1 , χ̃+1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 13.3 m(χ̃0

1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃±1 )+m(χ̃0
1)) ATLAS-CONF-2016-096640 GeVχ̃±

1
χ̃+1 χ̃

−
1 , χ̃+1→τ̃ν(τν̃) 2 τ - Yes 14.8 m(χ̃0

1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃±1 )+m(χ̃0
1 )) ATLAS-CONF-2016-093580 GeVχ̃±

1
χ̃±1 χ̃

0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 13.3 m(χ̃±1 )=m(χ̃0

2), m(χ̃0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃±1 )+m(χ̃0

1)) ATLAS-CONF-2016-0961.0 TeVχ̃±
1 , χ̃

0
2

χ̃±1 χ̃
0
2→Wχ̃0

1Zχ̃0
1 2-3 e, µ 0-2 jets Yes 20.3 m(χ̃±1 )=m(χ̃0

2), m(χ̃0
1)=0, ℓ̃ decoupled 1403.5294, 1402.7029425 GeVχ̃±

1 , χ̃
0
2

χ̃±1 χ̃
0
2→Wχ̃0

1h χ̃0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃±1 )=m(χ̃0

2), m(χ̃0
1)=0, ℓ̃ decoupled 1501.07110270 GeVχ̃±

1 , χ̃
0
2

χ̃0
2χ̃

0
3, χ̃0

2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃0
2)=m(χ̃0

3), m(χ̃0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃0

2)+m(χ̃0
1)) 1405.5086635 GeVχ̃0

2,3
GGM (wino NLSP) weak prod. 1 e, µ + γ - Yes 20.3 cτ<1 mm 1507.05493115-370 GeVW̃
GGM (bino NLSP) weak prod. 2 γ - Yes 20.3 cτ<1 mm 1507.05493590 GeVW̃

Direct χ̃+1 χ̃
−
1 prod., long-lived χ̃±1 Disapp. trk 1 jet Yes 20.3 m(χ̃±1 )-m(χ̃0

1)∼160 MeV, τ(χ̃±1 )=0.2 ns 1310.3675270 GeVχ̃±
1

Direct χ̃+1 χ̃
−
1 prod., long-lived χ̃±1 dE/dx trk - Yes 18.4 m(χ̃±1 )-m(χ̃0

1)∼160 MeV, τ(χ̃±1 )<15 ns 1506.05332495 GeVχ̃±
1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584850 GeVg̃

Stable g̃ R-hadron trk - - 3.2 1606.051291.58 TeVg̃
Metastable g̃ R-hadron dE/dx trk - - 3.2 m(χ̃0

1)=100 GeV, τ>10 ns 1604.045201.57 TeVg̃

GMSB, stable τ̃, χ̃0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃0
1→γG̃, long-lived χ̃0

1 2 γ - Yes 20.3 1<τ(χ̃0
1)<3 ns, SPS8 model 1409.5542440 GeVχ̃0

1

g̃g̃, χ̃0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 7 <cτ(χ̃0

1)< 740 mm, m(g̃)=1.3 TeV 1504.051621.0 TeVχ̃0
1

GGM g̃g̃, χ̃0
1→ZG̃ displ. vtx + jets - - 20.3 6 <cτ(χ̃0

1)< 480 mm, m(g̃)=1.1 TeV 1504.051621.0 TeVχ̃0
1

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 3.2 λ′311=0.11, λ132/133/233=0.07 1607.080791.9 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.45 TeVq̃, g̃
χ̃+1 χ̃

−
1 , χ̃+1→Wχ̃0

1, χ̃
0
1→eeν, eµν, µµν 4 e, µ - Yes 13.3 m(χ̃0

1)>400GeV, λ12k,0 (k = 1, 2) ATLAS-CONF-2016-0751.14 TeVχ̃±
1

χ̃+1 χ̃
−
1 , χ̃+1→Wχ̃0

1, χ̃
0
1→ττνe, eτντ 3 e, µ + τ - Yes 20.3 m(χ̃0

1)>0.2×m(χ̃±1 ), λ133,0 1405.5086450 GeVχ̃±
1

g̃g̃, g̃→qqq 0 4-5 large-R jets - 14.8 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2016-0571.08 TeVg̃

g̃g̃, g̃→qqχ̃0
1, χ̃0

1 → qqq 0 4-5 large-R jets - 14.8 m(χ̃0
1)=800 GeV ATLAS-CONF-2016-0571.55 TeVg̃

g̃g̃, g̃→tt̄χ̃0
1, χ̃0

1 → qqq 1 e, µ 8-10 jets/0-4 b - 14.8 m(χ̃0
1)=700 GeV ATLAS-CONF-2016-0941.75 TeVg̃

g̃g̃, g̃→t̃1t, t̃1→bs 1 e, µ 8-10 jets/0-4 b - 14.8 625 GeV<m(t̃1)<850 GeV ATLAS-CONF-2016-0941.4 TeVg̃
t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 15.4 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084410 GeVt̃1 450-510 GeVt̃1

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 20.3 BR(t̃1→be/µ)>20% ATLAS-CONF-2015-0150.4-1.0 TeVt̃1

Scalar charm, c̃→cχ̃0
1 0 2 c Yes 20.3 m(χ̃0

1)<200 GeV 1501.01325510 GeVc̃

Mass scale [TeV]10−1 1

√
s = 7, 8 TeV

√
s = 13 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: August 2016

ATLAS Preliminary√
s = 7, 8, 13 TeV

*Only a selection of the available mass limits on new
states or phenomena is shown.
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QCD for Precise Hadron Collider Phenomenology
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The Anatomy of Hadron-Hadron Collisions

I Hadron colliders are messy environments
I Access to high-energy interactions occurs in head on collisions and

are described by so called partonic hard cross sections
I Radiation from incoming and outgoing partons always present
I Also soft physics related to the Underlying events, among other

low-energy effects
23 / 38



from L. Dixon
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Quantum Corrections in QCD

W. Giele
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The ∼ 1% Frontier at the LHC

I pllT in Drell-Yan, an impressive
example of precise differential
measurements by ATLAS

I By normalizing to inclusive Z
cross section, improvement in
uncertainties

I Total uncertainties below 1%
for pllT < 200 GeV
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arXiv:1512.02192 [hep-ex]

I Higgs phenomenology will benefit
also from high luminosity runs

I Signal strength relative errors
could reach few percent

I Recent theoretical advances would
allow matching this precision
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Ingredients for QCD at ∼ 1%

In order to compute quantum QCD corrections two fundamental inputs
are required: the strong coupling αs and the Parton Distribution

Functions

From G. Salam

I Naively one is to expect NLO QCD corrections to be of order
∼ 10% and NNLO QCD at ∼ 1%

I Perturbative calculations are also required for the partonic cross
sections associated to the signal studied
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State-of-the-Art QCD Phenomenology

From K. Melnikov
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Inclusive Jet Production @ NNLO QCD

I Inclusive jet production is a fundamental process for hadron collider
phenomenology

I It constrains directly the gluon PDFs, and in that way it has an
impact on all theory predictions

I Although NNLO QCD PDFs appear in the market, employing data
sets for inclusive jet production, approximations have been made as
a full NNLO QCD calculation wasn’t available

I Very recently Currie, Glover and Pires (arXiv:1611.01460) have
presented the first NNLO QCD results including all subprocesses

I This is the conclusion of a formidable task that started around 1999
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Structure of Corrections over PS

 0.8
 0.9

 1
 1.1
 1.2

NNLOJET

K
 fa

ct
or

   |yj| < 0.5   

ATLAS, 7 TeV, anti-kt jets, R=0.4

NLO/LO
NNLO/LO
NNLO/NLO

 0.8
 0.9

 1
 1.1
 1.2

0.5 < |yj| < 1.0

 0.8
 0.9

 1
 1.1
 1.2

1.0 < |yj| < 1.5

 0.8
 0.9

 1
 1.1
 1.2

1.5 < |yj| < 2.0

 0.8
 0.9

 1
 1.1
 1.2

2.0 < |yj| < 2.5

 0.8
 0.9

 1
 1.1
 1.2

 100  200  500  1000

2.5 < |yj| < 3.0

NNPDF3.0

pT (GeV)

 0.6
 0.8

 1
 1.2
 1.4

NNLOJET

R
at

io
 to

 N
LO

   |yj| < 0.5   

ATLAS, 7 TeV, anti-kt jets, R=0.4

NLO
NNLO
NNLOxEW

 0.6
 0.8

 1
 1.2
 1.4

0.5 < |yj| < 1.0

 0.6
 0.8

 1
 1.2
 1.4

1.0 < |yj| < 1.5

 0.6
 0.8

 1
 1.2
 1.4

1.5 < |yj| < 2.0

 0.4
 0.6
 0.8

 1
 1.2 2.0 < |yj| < 2.5

 0.4
 0.6
 0.8

 1
 1.2

 100  200  500  1000

2.5 < |yj| < 3.0

NNPDF3.0

pT (GeV)

I Perturbative series converges
well for large jet pT

I But ∼ 10% NNLO corrections
around 100 GeV

I Comparison to ATLAS 7 TeV
data shows systematic
deviations for low pT

I We might see an impact on
PDFs fits
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Building NNLO QCD Corrections

I Two-loop amplitudes for process X

I One-loop amplitudes for process X + g

I Tree-level amplitudes for the processes X + gg, X + qq̄, etc

I Strategy to handle and cancel IR divergences

I Computing two-loop amplitudes is a significant challenge

I Need fine control of numerical integration of one-loop and
tree-level amplitudes over unresolved regions of PS

I Procedures for extracting IR divergences (subtraction/slicing)
can be cumbersome. A lot of recent progress: antenna
subtraction, qT subtraction, N -jettiness slicing,
sector-improved residue subtraction, among other
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High Multiplicity Amplitude Calculations
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Numerical Unitarity for Computing Amplitudes

AIM: Write amplitude (A) as a sum of master integrals.

A =

∫
A =

∫ ∑
i

Ni

ρ1 · · · ρni
=

∑
i

ci

∫
tmaster
i

ρ1 · · · ρni

General algorithm:

Unitarity←→
[Bern, Dixon, Kosower]

Residue
{ρ1,··· ,ρni}=0

(A)
Subtraction←→ Ni =

∑
i

citi

2-loop complications:

I IBPs - how to find basis {tmaster
i , tsurfacei }? [Ita 15]

I Much richer structure of cuts and master integrals

I Handle efficiently the regressions of tensor coefficients
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For 1-loop Amplitudes, A Powerful Technique!
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Jet pT Spectra at NLO for W + 5-Jet Production
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I Involves 1-loop amplitudes with 8
particles attached to the loop

I Real radiation with integration over
PS of 6(7) particles

I Impressive improvement on the
perturbative prediction

I Allows for tests of QCD in highly
complex kinematic configurations
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Cuts at One- and Two-Loops in 4-pt Amplitudes
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The Path to 5-pt Two-Loop Amplitudes

I First examples of amplitudes have started to appear
[Badger, Frellesvig, Mogull, Ochirov, O’Connell, Zhang], [Gehrmann, Henn, Lo

Presti], [Dunbar, Jehu, Perkins]

I Important progress on integrand decomposition
[Ita], [Zhang, Larsen], [Mastrolia, Peraro, Primo, Bobadilla]

I 5-pt (master) integrals also appearing
[Papadopoulus, Tommasini, Wever], [Gehrmann, Henn, Lo Presti]
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Conclusions

I Particle Physics at High Energies living very active times with new
challenges

I Hadron collider phenomenology is entering a precision QCD era to
challenge the SM and then find answers to outstanding problems

I This is also a requirement in order to exploit in full the physics
potential of current (LHC) and future (ILC, FCC, CEPC) colliders

I Theoretical progress has been steady and with new ideas, new
techniques and computer power we should be able to reach
unprecedented levels of precision

Thanks!
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