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A Complete Standard Model of Particle Physics

The SM is a quantum field theory that describes fundamental matter and
their (strong and EW) interactions

» With the discovery of the Higgs Boson
at the LHC in 2012, the last missing
piece of the SM has been found
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» We can now directly constraint all 19
parameters of the model




A Complete Standard Model of Particle Physics

The SM is a quantum field theory that describes fundamental matter and

their (strong and EW) interactions

» With the discovery of the Higgs Boson
at the LHC in 2012, the last missing
piece of the SM has been found

» We can now directly constraint all 19
parameters of the model

» Global fits of observables can now be
achieved, and theory/experiment
comparisons can hint for problems
with the SM

» The example figure shows a
multidimensional fit by the Gfitter
collaboration on the observables My,
my and My

2013, Francois Englert

and Peter

Higgs
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Higgs Phenomenology - LHC Run |

» Signal strengths for production
mechanisms

» Includes gluon fusion, VBF,
Higgsstrahlung and ttH

» ATLAS, CMS and combined
results shown

arXiv:1606.02266 [hep-ex|
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Higgs Phenomenology - LHC Run |

» Signal strengths for production
mechanisms

» Includes gluon fusion, VBF,
Higgsstrahlung and ttH

» ATLAS, CMS and combined
results shown

» Signal strengths for decay
processes

» Shown are Higgs decaying into
pairs of vector bosons and to
fermion pairs

> Excellent overall agreement,
though large uncertainties

arXiv:1606.02266 [hep-ex|
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Higgs Phenomenology - LHC Run |

> T T
EIZ  1F ATLAS and CMS
I LHC Run1
<
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Particle mass [GeV]

The coupling strength of the Higgs boson to weak bosons (sqrt) and
fermions as a function of the particle mass.
A qualitative compatibility to SM predictions is observed
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SM Cross Sections at ATLAS

o [pb]

Standard Model Production Cross Section Measurements
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Status: August 2016
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Similar results
from CMS
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SM Cross Sections at ATLAS
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Standard Model Production Cross Section Measurements

ATLAS  Preliminary
Run1,2 +fs 8,13 TeV

1011
10°
10°
104
10°
10%

10!

Status: August 2016

A ototal ()
040 inelastc
v
njz1 X2
0.1<pr<2TeV X\
he 4

Theory

LHCpp Vs=7TeV

BBl Daw 45-4970!

LHCpp Vs=8TeV
pr 25 G
A Data 20.3fo !
o020
‘o
LHC pp Vs =13 Tev
B Data 00814865
=0n W
P10 Ge oW,
oo W 3
-0 O 0
W W,
o
FELZ 3
nz4 a ze ! wy
B aon
s HS hl o 4
=7 véF ]
Lo Ho W 5
n=8 o 3
2
[~ ]
3 zw 18
e
wz
A
PP Jets ¥V w z tt t vV 7Y H Vy tEWHEZ tty Zjj ww Zyy Wyy Wi
Rios P ewk
i . i i ot ot . fd fd ot oL fd fd. tot fd fid fd

Many processes
studied

Overall
(impressive)
th/ex agreement

Jet towers deeply
testing QCD

Smallest xs's
from VV'/ 42
jets

Similar results
from CMS

38



SM Cross Sections at ATLAS

o [pb]

Standard Model Production Cross Section Measurements Status: August 2016
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A Tale of Troublesome Success




The Shortcomings of the SM
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The Shortcomings of the SM

» Can we understand the structure of the SM symmetry group
and its matter content?

» Why the mass hierarchies in the fermion sector and other
peculiarities of its parameters?

» Why the hierarchy between the electroweak scale and the
Planck scale?
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The Shortcomings of the SM

» Can we understand the structure of the SM symmetry group
and its matter content?

» Why the mass hierarchies in the fermion sector and other
peculiarities of its parameters?

» Why the hierarchy between the electroweak scale and the
Planck scale?

» Dark Sectors: cosmological and astrophysical observations
imply dark matter and dark energy for which the SM has no
candidates

» How can we understand the universe's large baryon asymmetry

» Can we consistently include gravity within the SM?

Many Beyond the SM models have been proposed through the
years to deal with some of these problems: Supersymmetry, Extra
dimensions, Composite Theories, Strings, Axions, Extra fields, etc.



Searching for Answers: Dark Matter Experiments

SuperCDMS: a cryogenic dark matter search
experiment, located at SNOLAB, Ontario, Canada

CRESST: a cryogenic superconducting thermal ,
dark matter experiment, located at Gran Sasso, Italy s

PandaX: a xenon based dark matter search
experiment, located at CJPL, Sichuan, China

9/38



Searching for Answers: Dark Energy Surveys

Dark Energy Experiments: 2013 - 2031 arXiv:1401.6085 [hep-ex]

2013 2015 2017 2019 2021 2023 2025 2027 2029

Dark Energy Survey (DES)

2031

HETDEX

|HSC imaging >| PFS spectroscopy >

Dark Energy Spec. Stage |V¢
Instrument (DESI)
I Euclid )

| Large Synoptic Survey Telescope (LSST)

Blue = imaging
Red = spectroscopy I LAk AL )
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Searching for Answers with Collider Experiments

LHC: proton-proton collider up to a design
energy of 14 TeV, CERN, Geneva
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Searching for Answers with Collider Experiments

LHC: proton-proton collider up to a design
energy of 14 TeV, CERN, Geneva

ILC: proposed Int. Linear Collider (0.5-1 TeV)
with possible hosts Japan, Europe or the USA

FCC-CEPC: proposed future circular colliders to reach
~ 100 TeV in energy, possibly at CERN and China

11/38



Searches at Hadron Colliders

VS.
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Bumps and Excesses at Colliders

When a heavy state is produced, JO’ /\ "

S Signal

that couples to SM particles, there
is the possibility of a discovery by
characterizing a peak on a related
observable. Detection depends on
the relative size of the signal and
backgrounds
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Bumps and Excesses at Colliders

do /\ —_

S Signal

When a heavy state is produced,
that couples to SM particles, there
is the possibility of a discovery by
characterizing a peak on a related
observable. Detection depends on
the relative size of the signal and
backgrounds

e BACKGROUND

A =

A3

e

Unlike resonance signals, there are many
BSM scenarios that enhance certain
observables in a smooth way. In these
cases a precise knowledge of the
background is necessary
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Searches at Hadron Colliders

VS.

New Signal Excesses

14 /38



The Brief Story of a Diphoton Resonance

>
3
5]

» On Dec. 15, 2015 the ATLAS and
CMS collaboration reported on first
results from Run Il at /s = 13 TeV

» Both collaboration saw a curious
excess of diphoton events at around
M., =750 GeV

» The statistical significance of the
deviations was above 3 sigmas

Data - fitted background

T T T T
ATLAS Preliminary

ATLAS-CONF-2015-081

o Daa

—— Background-only fit

Vs=13TeV, 3.2 fb™

0 600 800 1000 1200 1400 1600
m, [Gev]
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The Brief Story of a Diphoton Resonance

» On Dec. 15, 2015 the ATLAS and
CMS collaboration reported on first
results from Run Il at /s = 13 TeV

» Both collaboration saw a curious
excess of diphoton events at around
M., =750 GeV

» The statistical significance of the
deviations was above 3 sigmas

— References per month
= Cumulative (1/10)

5100

Events / 40 GeV

Data - fitted background

ATLAS-CONF-2015-081

T T T T
ATLAS Preliminary

* Daa

—— Background-only fit

Vs=13Tev,32f" 3

0t '
155
10| +
: Hmhﬂ T PR
Pt
5| +
10 *
15E-
00 0 600 800 1000 1200 1400 1600

myy [GeV]

» An avalanche of

attention followed

» More than 400 articles

explored in different
ways the deviation

38



August Dismissal of a Fluctuation

But in Aug. 5, 2016 both collaborations revisited the measurement with
more than 4 times the amount of data

12,9 fb™ (13 TeV)

> T r T
§ 10k ATLAS Prelimina 2
8 5 ry « Data v Data
8 O10°4 — Fit model
3 —— Background-only fit 9 E
2 Spin-0 Selection =~
102 ) 0107
5 =13TeV, 15.4 fiy e E
3 E
S
10 [T 1
10 s
1 E ,
£ ‘,ll
107 3 o
o Linst
5 £ 4
S 1 i Ilullm,
5 10 g
| o
= -5 ]
© T
g 1 E a
200 000 500 2000 E 500 1000 1500 2000

m, [GeV]

m,, (GeV)

» The evidence of a resonance observed earlier was deemed a

fluctuation of the background
» No matter how big data sets are, always in tails of distributions fake

excesses can appear
16 /38



Few Comments on the Experience

» Clear signatures are simplest to analyze, though dataset size
Important

» Eager community to find hints of BSM

» Precision Calculations are keen even for clear signatures, both

to cross check experimental fits techniques and for finding
O(1 — 5%) effects
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The M., Spectrum at NNLO QCD

With a precise calculation by Campbell, Ellis, Li and Williams the
experimental fits were validated

S 10T T T T 3 1 ATLAS data
g ® ATLAS Preliminary - E NNLOGSI))
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g £ E
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3 e 3 [~
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3 i ‘ l\”’i‘m i Py
I T E 25
£ E + E ]
= E 3 = 2.0
s 3 Z
g s 3 215 | !
200 400 600 800 1000 1200 1400 1600 «% 1.0 »LfrﬂnH H» —H O
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200 400 600 800 1000 1200 1400 1600

m,y [GeV]
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The M., Spectrum at NNLO QCD

With a precise calculation by Campbell, Ellis, Li and Williams the
experimental fits were validated

-[é Predictions at high invariant masses.

As we all know, bump hunts in the diphoton system assume a smooth
function which can be fitted to the data. Begging the question,
How smooth is smooth? :-)

t
m m Williams at Moriond 2016
t

X=NNLO(5/+m,)
1.08] X=NNLO(5/;)+Ac L0
X=NNLO(S! f+m)+Achg iO(K(my))

1.06}

1.04]

X/NNLO(S/)

<]
1

0.9
200 400 600 800 1000 1200 1400 1600
my, [GeV]
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Searches at Hadron Colliders

Clear New Signals

VS.

19/38



Excesses in SUSY Searches

» As an example, in many SUSY models heavy
colored particles are pair produced

» They produce long decay chains of jets and
leptons

» In the end heavy neutral stable particles scape the
detector, producing missing energy
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Excesses in SUSY Searches

» As an example, in many SUSY models heavy
colored particles are pair produced

» They produce long decay chains of jets and
leptons

» In the end heavy neutral stable particles scape the
detector, producing missing energy

D | ATLASFroimnay-o omzisae |
O 30F 15— 13Tev, 14.7 " %% standars el (M) E
uO) o5 SRZ ee+up B v (mc) ]
~ [ Fravour symmetric (MC) s
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[ S T I m(@7)=(1095,205) GeV | L. ;
15 — miEz)-(1240560) GoV | NP modifying the associ-
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Sl 2
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S el S, = — |
OO 100 200 300 400 500 600
Pl [GeV]
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Summary Plots for SUSY Exclusion Limits

ATLAS SUSY Searches* -

95% CL Lower Limits
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QCD for Precise Hadron Collider Phenomenology
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The Anatomy of Hadron-Hadron Collisions

Final-State

Radiation Outgoing Parton

PT(hard)
q

Proton

Proton
Underlying Event Underlying Event
"*"earu g Initial-State

Radiation

Outgoing Parton

» Hadron colliders are messy environments

» Access to high-energy interactions occurs in head on collisions and
are described by so called partonic hard cross sections
» Radiation from incoming and outgoing partons always present

» Also soft physics related to the Underlying events, among other
low-energy effects
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Partonic Cross Section
in Perturbation Theory

2
G(as,nup, np) = las(up)l™ [3(0) + ;’5(1)(111-‘41:?) + (“4> 7 (up, pp) + - }
0y 27

LO NLO NNLO

from L. Dixon

Problem: Leading-order, tree-level predictions only qualitative

due to poor convergence w . Do uef oy
of expansionin  as(p1) NNLO = Trki ¢ tomaiis
— B — NNLO, MRST 04
tti =up = 5 of 3
(setting R MF ) 2 NLO (2007)
Example: Zproduction at Tevatron 3 A
Distribution in rapidity ¥ y o \
1 (E+p: 3 Lo L
Y = ZIn 3 “ \
2 E—p. D \
do h 0 X
—_ as Ny =
ay ° ) 1 LT B I B T
still ~50% corrections, LO > NLO [Anastasiou, Dixon, Melnikov, Petriello hep-ph/0312266]
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Quantum Corrections in QCD

Goal: do0= Q'S]I(mn‘se + HSmJ—IUUp-/- Q’SZmelaap)
* Increased accuracy (expansion = A (M ot AN g 19T AT 5 450)
in small coupling constant)
Issues: Two-Loop One-Loop Tree-Level

* Analytic complexity
* Numerical computing time for
phase space integrations

o O(ad)y ————

NLO (adds O(a#1)) =

NNLO (adds O(a/*?)) = g
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The ~ 1% Frontier at the LHC

arXiv:1512.02192 [hep—ex]

T ATLAS'  (s=8Tev, 203"
0 ) ) _ﬁlo 6669V<r1:.1165ev Iy, <24
» p7 in Drell-Yan, an impressive =0
. . . 210
example of precise differential 2 - cechama
3 pp-channel
measurements by ATLAS 1075 4 Combined

Statistical uncertainty
I Total uncertainty

» By normalizing to inclusive Z

E
cross section, improvement in % 10 i g
. . c|E Ll ol ';-\.- 4 -
uncertainties 5[ 1?%Eﬁ:+ﬂ Zg; It B
P 080'9‘3? XINDF=43/43 g -+“ 41 1
> Total uncertainties below 1% — wtl o
for p < 200 GeV R .

1 10 10%
! [GeV]
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The ~ 1% Frontier at the LHC

> plqlﬂ in Drell-Yan, an impressive
example of precise differential
measurements by ATLAS

» By normalizing to inclusive Z
cross section, improvement in
uncertainties

> Total uncertainties below 1%
for p < 200 GeV

» Higgs phenomenology will benefit
also from high luminosity runs

» Signal strength relative errors
could reach few percent

» Recent theoretical advances would
allow matching this precision

b
T ATLAS = (s=8Tev, 203"
(]
810 6669V<r1:.11659V Iy <24
=0
g10
3 ee-channel
g —— pp-channel

10 —4— Combined

Channel
Combined

Pull [o]

arXiv:1512.02192 [hep—ex]

I Total uncertainty

Statistical uncertainty

Higgs boson signal strength
Hoyy f————————

Hes WW

=
T ‘ t w |
1.01=1— “_. ey
L 1
1,==35;-_|ﬁ::¥: i _
Mo ﬁ i
0.997 ~2iNDF=43/43 "l
oF !
o 1
1 10 10?

P} [GeV]

CMS Projection

Expez‘;led unoenalnﬂe‘s on — [

I 300"t {5 14Tev Mo Teory Unc.

0.10 015 _
expected uncertainty
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Ingredients for QCD at ~ 1%

In order to compute quantum QCD corrections two fundamental inputs
are required: the strong coupling ais and the Parton Distribution
Functions

quark-gluon luminosity uncertainty

mmmmmm 10000 T T T T
PoraLios. mio_m - quark-gluon

1000 |

v pp—> It (WWLO)

M[GeV]

100

QCD (M) =0.1177 = 0.0013 200> |7 . 05%

100 1000 b E
y

¥ Qe
From G. Salam

» Naively one is to expect NLO QCD corrections to be of order
~ 10% and NNLO QCD at ~ 1%
» Perturbative calculations are also required for the partonic cross

sections associated to the signal studied
27 /38



State-of-the-Art QCD Phenomenology

dijets O(3%) gluon-gluon, gluon-quark PDFs, strong couplings, BSM
H+0 jet O(3-5 %) fully inclusive (NSLO ) Higgs couplings
He1 jot 0(7%) Luellélaejglil:]sﬂixi;e T%i:, ops Higgs couplingségmgvges,ng; jstructure for the
tT pair 0O(4%) fully exclusive, stable tops ESF?O;;:AGC“O“’ mass, pr, FB asymmetry,
single top O19) | Ml xclusive. stabietops, Vs, widith, PDFs
WBF O(1%) exclusive, VBF cuts Higgs couplings
Wj O(1%) fully exclusive, decays PDFs
Z+j O(1-3%) decays, off-shell effects PDFs
ZH 0O(3-5 %) decays to bb at NLO Higgs couplings (H-> bb)
7z O(4%) fully exclusive Trilinear gauge couplings, BSM
Www 0O(3%) fully exclusive Trilinear gauge couplings, BSM
top decay O(1-2 %) exclusive Top couplings
H ->bb O(1-2 %) exclusive, massless Higgs couplings, boosted

From K. Melnikov
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Inclusive Jet Production @ NNLO QCD

>

Inclusive jet production is a fundamental process for hadron collider
phenomenology

It constrains directly the gluon PDFs, and in that way it has an
impact on all theory predictions

Although NNLO QCD PDFs appear in the market, employing data
sets for inclusive jet production, approximations have been made as
a full NNLO QCD calculation wasn't available

Very recently Currie, Glover and Pires (arXiv:1611.01460) have
presented the first NNLO QCD results including all subprocesses
This is the conclusion of a formidable task that started around 1999
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Inclusive Jet Production @ NNLO QCD

> Inclusive jet production is a fundamental process for hadron collider
phenomenology

> |t constrains directly the gluon PDFs, and in that way it has an
impact on all theory predictions

> Although NNLO QCD PDFs appear in the market, employing data
sets for inclusive jet production, approximations have been made as
a full NNLO QCD calculation wasn't available

» Very recently Currie, Glover and Pires (arXiv:1611.01460) have
presented the first NNLO QCD results including all subprocesses

» This is the conclusion of a formidable task that started around 1999

7TeV, lyjl < 0.5, 100 GeV < py < 116 GeV 7TV, lyjl < 0.5, 642 GeV < pr < 688 GeV
Iyl Pr 120 NNLOJET Iyl T

x106 _NNLOJET
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N Welpr,=1.0 ——

Lo N el =2.0
6x10° o o

Upr,=0.5 - - - -
pelpr,=1.0 ——
H/pr,=2.0

ST

do/dpr [fb/GeV]
2
5
do/dpr [fb/GeV]

4x10%

3x10°8 60
025 05 1 2 4 025

Hrlpr,
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Structure of Corrections over PS

K factor

—— NLoLo
—— NNLOLO

ATLAS, 7 TeV, anti-k jets, R=0.4 NN,

05<lyl<10 -
| | | =
T T T =

10<ly<15
| | |
T T T

15<ly<20
| | |
T T T

20<lyj<25
|
T T T
[ o NNPDF3.0
1
= 25<y<30 b
08 I I |
100 200 500 1000
pr (Gev)

> Perturbative series converges
well for large jet pr
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Structure of Corrections over

K factor
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» Comparison to ATLAS 7 TeV
data shows systematic
deviations for low pr

» We might see an impact on
PDFs fits
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Building NNLO QCD Corrections

v

Two-loop amplitudes for process X

v

One-loop amplitudes for process X + g

v

Tree-level amplitudes for the processes X + gg, X + qq, etc

v

Strategy to handle and cancel IR divergences
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Building NNLO QCD Corrections

» Two-loop amplitudes for process X
» One-loop amplitudes for process X + g
> Tree-level amplitudes for the processes X + gg, X + qq, etc

» Strategy to handle and cancel IR divergences

» Computing two-loop amplitudes is a significant challenge

» Need fine control of numerical integration of one-loop and
tree-level amplitudes over unresolved regions of PS

» Procedures for extracting IR divergences (subtraction/slicing)
can be cumbersome. A lot of recent progress: antenna
subtraction, qr subtraction, N-jettiness slicing,
sector-improved residue subtraction, among other

31/38



32/38



Numerical Unitarity for Computing Amplitudes

AIM: Write amplitude (\A) as a sum of master integrals.

Ao /A / Z _ Z i / tmaster
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Numerical Unitarity for Computing Amplitudes

AIM: Write amplitude (\A) as a sum of master integrals.

am fam 8y

General algorithm:

o [Bern, Dixon, Kosower] {pl yee T }:0

: Unitarit . Subtracti
g ] ey Residue (A) &5 Ni:E cit;
i

33

38



Numerical Unitarity for Computing Amplitudes

AIM: Write amplitude (\A) as a sum of master integrals.

am fam 8y

General algorithm:

: Unitarity . Subtraction
. ] —— Residue (A) “+— N;= E city
— - - [Bern, Dixon, Kosower] {pt,++,p"i }=0 -

2-loop complications:
» IBPs - how to find basis {tinaster gsurface1
» Much richer structure of cuts and master integrals

» Handle efficiently the regressions of tensor coefficients
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For 1-loop Amplitudes, A Powerful Technique!

[Giele, Zanderighi
104 A"(+-4- ) [DP] = arXiv:0806.2152]
A'(+-+.)[DP] =

fit to degree 4 polynom. = =
fit to degree 9 polynom. —

10 15 20
Number of gluons

BUT STILL VERY COMPUTER INTENSIVE [ BlackHat + Sherpa ]

NTUPLES: STORE AS MUCH INFO AS POSSIBLE DURING YOUR COMPUTATION!
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Jet pr Spectra at NLO for W + 5-Jet Production
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» Involves 1-loop amplitudes with 8
particles attached to the loop

» Real radiation with integration over

PS of 6(7) particles
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Third Jet p,. [GeV ]
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Fourth Jet Py [GeV ]
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Fifth Jet p,, [ GeV ]

10°

» Impressive improvement on the

perturbative prediction

» Allows for tests of QCD in highly
complex kinematic configurations
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Cuts at One- and Two-Loops in 4-pt Amplitudes
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The Path to 5-pt Two-Loop Amplitudes

» First examples of amplitudes have started to appear
[Badger, Frellesvig, Mogull, Ochirov, O'Connell, Zhang], [Gehrmann, Henn, Lo
Presti], [Dunbar, Jehu, Perkins]

» Important progress on integrand decomposition
[Ita], [Zhang, Larsen], [Mastrolia, Peraro, Primo, Bobadilla]

» 5-pt (master) integrals also appearing

[Papadopoulus, Tommasini, Wever], [Gehrmann, Henn, Lo Presti]
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Conclusions

» Particle Physics at High Energies living very active times with new
challenges

» Hadron collider phenomenology is entering a precision QCD era to
challenge the SM and then find answers to outstanding problems

» This is also a requirement in order to exploit in full the physics
potential of current (LHC) and future (ILC, FCC, CEPC) colliders

» Theoretical progress has been steady and with new ideas, new
techniques and computer power we should be able to reach
unprecedented levels of precision

Paras  \
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Thanks!
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