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Higgs to two photons channel

Higgs to two photon branching ratio in the order of < 1%, though
it has one of the cleanest signal topologies so it is easier to
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Simple invariant mass reconstruction :
m,, = V2E,E,(1-cos6)
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Event interpretation Vertex!




Photon Identification

* Differentiating photons from
background (fake photons)

e These mainly come from pion
decays with collimated photons.

* Use of a Boosted Decision Tree

(BDT) to differentiate the shapes of AN ’}/
the shower in the ECAL.

* BDT trained using photon enriched
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* Plus a pre-selection.
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Photon Identification

* Differentiating photons from
background (fake photons)

e These mainly come from pion
decays with collimated photons.

* Use of a Boosted Decision Tree

(BDT) to differentiate the shapes of AN ’}/
the shower in the ECAL.
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* Plus a pre-selection.

Signal like!
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Photon Identification Validation

* Validation is done using z->ee events
both in data & MC.

* The idea being that the kinematics of
z->ee events are similar to h->yy
events (without the tracks).

* The MC events are taken from a Drell-
Yan sample after properly selecting
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the events. _+~CMS Preliminary 12.9 fo" (13 TeV)
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Photon Energy
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There are higher level corrections to the energy of a photon. To
obtain these corrections the energy response of a single photon is
essentially estimated/predicted using multi-variate techniques
(regression). The corrections are then derived from these function.
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Photon Energy
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Even after the energy corrections are
applied, there are still some left over
data/MC differences. These corrections
are then applied to the data to match the
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These corrections vary in detector
region and run number.



Vertex Identification

* Also a BDT, taking advantage of the recoil
and conversion information.

* Choosing the correct vertex as opposed to
the primary vertex benefits the creation of

the di-photon object.
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Primary vertex is the vertex with maximum
sumpt2, tends to be the Ot vertex.

Recoil variables

Additional variable if a conversion is present

Validation of this technique in data is done using Z->uu events, here you get two nice
tracks. The photon is emulated by removing the tracks of the muon.

Py (GeV)



Analysis Strategy

* With a clear definition and optimization of our basic objects we can now begin to look
and interpret di-photon events in data!

* The main idea is to divide the data into categories with good/bad S/B and mass

resolution.

* To do this one more BDT is used. The di-photon BDT has as input variables di-photon
kinematics and the output from the vertex BDT and the photon BDT plus and additional one
which | won’t mention here.

* Beyond this, if the event has good reconstructed objects such as leptons,jets or missing
energy the event can be classified according to it’s production process + the particular decay -
> hadronic or leptonic.

To CMS Object
reconstruction

Photon Energy and
Scale Corrections
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Di-Photon BDT

* Di-Photon events are classified using
a BDT. Di-photon events with a good
mass resolution and good di-photon
kinematics get a score closer to 1.

* By optimizing S/B regions in the BDT
one can define regions/categories of
different S/B ranges.

Untagged 0 :

Low resolution and low S/B

Untagged 1

Untagged 2

The BDT is trained with signal
(gef,vbf,vh,tth) and background

VAR

CMS Preliminary

12.9fb™ (13TeV)

N IIII|IIII|IIII|IIII|IIII|[III|IIII|III[]IIIIIIIII
31 0’ ¢Data Simulation background SM H—yy, mH=125 GeV
2 [ jet jet I goH
S10° I v jet I VBF
o Eavy EVH

10° E MC stat. uncert.  []ttH
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High resolution and high S/B

(o}
—i
~~
(e}
—i
S~
—
i




Event interpretation

* To identify different production processes and gain sensitivity,
additional objects are identified within the event.

* Leptons, Jets, missing energy.
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* The TTH process is split into leptonic decays and hadronic decays.

* Hadronic decay selection:
* At least 1 reconstructed b-jet .
e A minimum of 5 jets in the event. {

* Leptonic decays selection: H
A minimum of one good lepton. T
e Atleast1bjetinthe event. .
e Atleast 3 jetsin the event




Event interpretation

* VBF has a more complicated procedure.
* Two new BDTs are used to identify an event as vbf.

* The di-jet kinematics BDT and the combine di-jet and di-photon
BDT (takes di-photon and and di-jet BDT output as input).

* The di-jet kinematics BDT is used to identify a good di-jet pair.
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* The combined BDT is used to further discriminate the di-jet signal
from background.

* The di-jet kinematics BDT is trained using MC VBF signal sample
@ 125 GeV and for background the standard processes are used.

Kinematics Di-jet BDT
. Combined BDT
Di-Photon BDT

l

To Event Interpretation




Event interpretation

* No Associated production (Higgstrahlung) yet...
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Event interpretation

?

TTHHadronicTag
TTHLeptonicTag
VBFTag_0

VBFTag_1 |
UntaggedTag 0 \

TTHHadronicTag
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TTHHadronicTag

UntaggedTag_1

UntaggedTag_2 To Results

Unt dTae 3 UntaggedTag_1
ntagge af‘;/




Signal And Background model

CMS simulation Preliminary 13 TeV
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Results

- -1
> _CMS IP,r?/’,",”T‘?r.V, S |1 29ﬂ|3 ,(,1 ,3| TeV)_ CMS rreliminary 12.9 b (13TeV)
OSOOOTHQ’Y’Y . __ Q 1 I|_|||||||||||||||| T T LN I L L L B B B B L
15} C L o All categories § 3 -7 : o 1o
= [ Me1260GeV. =095 gq. By weighted - e N A
2 4000 & : Data - = T - T () (LTLTLLETRILLL: P RRRREL_ DI I
2 — S+Bfit X 5 " o
w C ] 8 ook R T PN ER——- o I Z
k> so00f~ % T B component —~ — Observed e
£ T o . ot v N >
=) - [ 1+20 . ] 7 —
§ 2000~ E 0 E e Expected !
D ok ] 107 5 o
Q 1000~ - Expected T O RSLLITIITIIERRN Bo
0w : 107 m,, = 125.09 GeV
SN P I I B ] 107
200 ' B component subtracted 1 107 T e R
3 ST
100 _: 10 ° 1 I 1 1 1 | 1 1 1 | 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 I 1
E 116 118 120 122 124 126 128 130 132 134
0 my (GeV)
-100 = ° °go
] P-value scan, significance at m =
100 110 120 130 140 _ 150 160 _ 170 _ 180 . . .
myy (GeV) 125.09 GeV is 5.60. Highest observed is

Di-Photon invariant mass spectrum 6.1 at 126 GeV.

Famous bump reappeared !




Results

CMS rpreliminary

12.9fb™ (13 TeV)
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Results
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Conclusion

* First results with 2016 data have been shown.

* Reliable mass measurement still in the works (need to
understand 13TeV detector conditions better, add VH channel)

* Machinery has been built and centralized, measurement turn
around time has been reduced.

* Centralization within CMS is imperative as the LHC moves
into HL stage.
* This collaboration always welcomes a fresh pair of eyes!

* If you are interested in contributing contact : Seth Zenz (Imperial
College), Federico Ferrie (SACLAY) Martina Malberti (Milano-

Biccoca).
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Back up

22 11.3 Kinematic Dijet MVA

1243 The kinematic Dijet MVA is built using the following variables:

1244

1245

1246

1247

1248

1249

1250

1251

the transverse momenta of the leading and subleading photons divided by the in-
variant mass of the di-photon candidate: p%'l /ni, and p}” /My ;

the transverse momenta of the leading and subleading jets: p’Tl and P¥ ;
the di-jet invariant mass, m;,j,;

the difference in pseudorapidity between the two jets, Ay, ;,;

the so-called Zeppenfeld variable [17], defined as 7" = 1,45 — ﬂi‘)—?ﬂ-jz—)/, where 1| ,ps =

(71 + 72);
the difference in azimuthal angle between the dijet and the diphoton, A¢y; i, 1)-
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Back up

1273

1274
1275
1276
1277
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1280
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11.4 Combined MVA and Categorization Scheme

The Combined Dijet MVA is built using the Kinematic Dijet MVA, the Diphoton MVA, and
the p1'"%/m.,, as inputs. The purposes of this variable is to maximally discriminate the VBF
dijet signal from background utilizing information from all relevant objects tagged in the event.
pL" /m.. is included as an input because of its significant correlation to both the Dijet MVA

and the Diphoton MVA.

The information is combined by means of a BDTG algorithm. The BDTG is trained on sim-
ulated events: a VBF H— < sample with my =125 GeV is used as signal. All standard
backgrounds are used in the training. Background rejection suffers when gluon fusion is used
as a training background and it is therefore not used in the Combined MVA training. Figure 65
shows the BDT output for VBF signal, gluon fusion, the background simulation and data.

A tight (VBFTag0) and loose (VBFTagl) category are created by two selection requirements
on the Combined MVA. These categories are optimized by first choosing the requirement that
maximizes the S/v/S + B of the tight bin, then excluding those events and repeating the pro-
cedure for the loose bin. Of signal events accepted by the tight category, 72% are VBF and 27%
luon-fusion; for the loose category these two signals each make up 49% of the total accepted
signal. (The remaining ~ 1% in each case is from the other production modes.)
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Back up

ss2  The following variables are used as input to the event classifier:

953

954

955

956

957
958

959
960

961
962
963

the transverse momenta for both photons, rescaled for the diphoton mass, p;’ 2) /Moy

the pseudorapidities of both photons, 7'(?);
the cosine of the angle between the two photons in the transverse plane, cos(A¢);
the identification BDT score for both photons;

the per-event relative mass resolution estimate, under the hypothesis that the mass
has been reconstructed using the correct primary vertex (¢;,);

the per-event relative mass resolution estimate, under the hypothesis that the mass
has been reconstructed using an incorrect primary vertex (0z);

the per-event probability estimate that the correct primary vertex has been used to
reconstruct the mass, based on the event-level vertex selection MVA as described in
Section in 7.2.
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764
765
766
767

Back up

8.1.2 Photon Id MVA input variables

The following variables are used as input to the BDT and described in detail in Section 4.0.1:

Tiyins COViyiw, Eaxa/Esys, Ro, 0y, 0y, Preshower ogg, PF Photon ISO, PF Charged ISO (worst
vertex), PF Charged ISO (selected vertex), p, supercluster 7, and supercluster Eg 4.
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