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Results are presented from potential energy minimization of water clusters and from molecular 
dynamics and Monte Carlo simulations of a liquid water droplet model. A new method for 
molecular dynamics-the implicit-Euler/Langevin scheme-is used in combination with a 
truncated Newton minimizer for potential energy functions. Structural and thermodynamic 
properties are reported for the scheme (with time steps of 5 and 10 fs), compared to a standard 
explicit formulation (with At = 1 fs), to a Monte Carlo simulation, and to available 
experimental data. Results demonstrate that the implicit scheme is computationally feasible for 
large-scale biomolecular simulations, and that the droplet model can reasonably reproduce 
general structural features of liquid water. Results also show that the desired behavior is 
obtained from the implicit formulation: stability over large time steps, and effective damping of 
the high-frequency vibrational modes. Thus, major “bulk” properties of the system of interest 
may be observed more rapidly. 

I. INTRODUCTION 

Liquid water has been investigated extensively through 
Monte Carlo and molecular dynamics simulations. ‘-lo Since 
a large body of structural and thermodynamic data is avail- 
able from experiment, simulations have been used to test 
various solvent potentials that will later be incorporated into 
protein and nucleic-acid force fieldss-” In addition, the 
unique properties of water-such as the complex structure 
of the liquid state, the polymorphs of ice, the liquid-water/ 
ice relationship, and the anomalies of supercooled water- 
have always provided intriguing stimuli for new hypotheses 
and subsequent simulations.“-” 

In this work, our goal is to test a new numerical algo- 
rithm for molecular dynamics based on the implicit-Euler 
integration scheme and the Langevin equation.‘8-21 We have 
already applied the method successfully to smaller systems 
for which structural and energetic data are available.‘8~‘g~21 
It is our current goal to develop the method for efficient use 
in macromolecular simulations. Since competitive perfor- 
mance of the scheme depends on formulation of the compu- 
tational model itself (due to added complexity-see Sec. II), 
our goal in the present work is also to establish a feasible 
(water-droplet) model and verify that it is physically rea- 
sonable. We anticipate investigating more complex models 
at a later stage. 

The numerical methods will be presented in Sec. II. De- 
tails of the force field and program setup will be summarized 
in Sec. III. Results from potential energy minimization of 
water clusters will be discussed in Sec. IV. In particular, we 
will analyze the connectivity network of an energy-mini- 
mized 125-molecular cluster, since it is used: ( 1) as the ini- 
tial configuration for the molecular dynamics and Monte 
Carlo simulations, and (2) for establishing a procedure for 
radial-distribution-function analysis. In Sec. V, we will dis- 
cuss results from the molecular dynamics and Monte Carlo 

runs. Findings from both our implicit scheme and a common 
explicit scheme will be compared to each other and to avail- 
able data. The Monte Carlo simulation will further help 
place these differences in appropriate perspective. We will 
summarize our results in Sec. VI. 

II. METHODS 
A. The implicit-Euler/Langevin scheme 

Our scheme addresses two related issues that are of gen- 
eral interest in molecular dynamics simulations: ( 1) using 
larger time steps than those typically used in explicit 
schemes, and (2) damping effectively the high-frequency 
vibrational modes. We achieve stability over larger time 
steps by employing the implicit-Euler scheme, well known in 
numerical analysis for solving stiff differential equations.22 
This scheme discretizes the differential equation (written in 
vector form) dy/dt -f(y) by the formula 
CY”+’ - y”)/At=f(y”+’ ). The quantity At is the time 
step, and y” is the approximation to y(nAt). We achieve a 
frequency-discriminating damping by introducing a cutoff 
frequency parameter, w, , and then exploiting the two differ- 
ent types of damping that enter into our scheme-frictional 
and intrinsic. This establishes a regime where modes with 
frequencies w%w, are effectively frozen by the method, 
while modes CL) (w, are fully activated. is7*’ In this way, some 
quantum effects can be mimicked. 

The Langevin equation couples the molecular system to 
a thermal reservoir by mimicking effects of molecular colli- 
sions. A simple analytic formulation that has been used in 
molecular dynamics simulations is given by the following 
differential equation:B,24 

Md2x(t)= 
dt2 

- g E (x(t)) - @i+(@ + r(t) 
dt * 

(1) 
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In this equation, M is the diagonal mass matrix, x and v are 
the coordinate and velocity vectors, respectively, of the mo- 
lecular system, g, is the gradient vector of the potential en- 
ergy, y is a collision parameter, and r is a random force vec- 
tor. The random force is a stationary, Gaussian process with 
mean zero and covariance matrix given by 
(r(t)r(t’)r)=2y&TMS(t-t’).Thequantitiesk,andT 
denote Boltzmann’s constant and the temperature in Kelvin, 
respectively. The random force is chosen in this way to bal- 
ance the frictional damping of the energy with fluctuations 
of the random force (that may increase the energy) and to 
establish the desired equilibrium. 

Discretization by the implicit-Euler scheme produces 
the following pair of differential equations: 

M [(V + 1 -vn)/At] = _- g,(x”+‘) 

-pWv”+‘+r”+‘, @a) 
(x”+ 1 - x”)/At = v” + ‘, (2b) 

where 
(r”) = 0, (3a) 
(r’*(r’n)T) = 2yk,TM(S,,,,,/At). (3b) 
Note that, since both x and v are evaluated at step n + 1 

in the right-hand side of (2a), a procedure for calculating 
X n + ’ must be formulated. Typically in implicit schemes this 
is achieved by solving a nonlinear system of equations at 
every step. We have shown that we can obtain x” + ’ in our 
case by minimizing the “dynamics” function, <p(x) , where 

Q(x) =j(l +yAt)(x-x;)*M(x-x;f) 

+ (WZE(x), 
(4) 

G =x”+ [At/(l+yAt)](v”+AtM-‘r”+‘). (5) 
Note that Q(x) contains a quadratic, “kinetic” term 

and a potential-energy term.” The vector x0, defined above, 
is available through quantities computed in the previous step 
(hence the superscript n) . Each step of our procedure thus 
consists of minimizing @(x) to obtain xn + ’ and then calcu- 
lating v” + ’ from (2b). A good initial guess for a minimum of 
Q, is xg . Any minimum of Q>(x) will satisfy (2a j. 

To minimize @ efficiently, we have developed a truncat- 
ed Newton method for potential energy functions.2L25~26 
The truncated Newton approach is attractive for large-scale 
applications because: ( 1) computational effort is concen- 
trated in conformational regions near the minima, (2) sep- 
arability of the Hessian into bonded and nonbonded terms is 
exploited to accelerate convergence, (3) computational re- 
quirements are versatile and manageable for large problems, 
and (4) the method retains the qnadratic convergence of full 
Newton methods. 

l To achieve the damping of high-frequency modes, as 
discussed earlier, we choose w, as 

u, = k, T/+i (6) 
where +i is Plan&s constant divided by 277. We then set y to 

y= (w,)” At. (7) 
We have shown theoretically and computationally that, for 
this choice, we can obtain for harmonic oscillators a parti- 

tion of energies among the various modes that closely resem- 
bles the quantum-mechanical distribution. Low-frequency 
modes contribute nearly k, T/2 energy per mode, .as pre- 
dicted by classical statistical mechanics, while high-frequen- 
cy modes contribute much less; a critical point for the distri- 
bution occurs near w = u,.‘~~‘~ Details of computational 
complexity and performance are described separately.” 

B. An explicit/Langevin scheme 

For comparison, we investigate an explicit discretiza- 
tion of the Langevin equation ( 1) as well. Note that 
application of the explicit-Euler method 
[dy/dt=f(y)~(y”+l-yY”)/At=f(y”)] wouldproduce 
xn and v” in the right-hand sides of Eqs. (2a) and (2b), in 
place of x” + * and v” * ‘, respectively; however, once x” + ’ is 
solved by (2a), the existing form of (2b) can be used. The 
resulting scheme can be written as: 

kqvn+’ - v”)/At ] = - gE(xn) - yMv” + rn+ * 
(W 

(x 
It -I- 1 - x”)/At = f+ ‘. (8b) 

A convenient way of rewriting the explicit scheme 
( 8a), (8b) so as to obtain X” + ’ and v” + ’ from xn and vn (we 
compute v” in order to calculate the kinetic energy at every 
step) is given by replacing (8a) with 

X “+l=x”+At(l-~At)v” 

+ At’M -‘[r”+’ - gE(xR)]. (9) 
This scheme is related to the second-order accurate Verlet 
leap-frog schemeZ3 used commonly for molecular dynamics 
without the friction and random forces. With our additional 
terms, however, the scheme is first-order accurate, as implic- 
it Euler. The main difference between the implicit and ex- 
plicit formulations is that, while implicit Euler is stable over 
a wide range of At choices, the explicit scheme is only stable 
when At is sufficiently small. Note that, throughout our dis- 
cussion, superscripts of r do not affect the scheme since r is 
chosen independently at every step. 

111. THE MODEL AND PROGRAM 
A. The force field 

We employ the SPC force field, an “effective pair poten- 
tial” developed by Berendsen et uZ.,~ known both for being 
computationally simple and physically reasonable.’ Recent- 
ly, the use of the SPC potential in nucleic acid simulations 
has demonstrated good numerical and physical behavior in 
relation to other potentials.’ 

The SPC potential consists of two intermolecular 
terms--van der Waals and electrostatic-as follows: 

-%PC (xl = 
‘inter. oxygen pairs (Lj),i<j 

+ (10) 
inter. atom pairs (k,l), k<l 

The quantities r denote interatomic distances, and A, B, and 
Q are energy parameters. Note that the first term is summed 
for all O-O atom pairs, while the second includes 4 H-H, 
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4 O-H, and 2 O-O interactions for each distinct molecu- 
lar pair (id). The vector x represents the collective vector of 
Cartesian coordinates for the molecular system, from which 
the ri/‘s are determined [r = Y(X) 1. It is crucial for this work 
to realize that parameters of the SPC potential were fitted to 
reproduce the experimentally known interaction energy and 
pressure for liquid water at 300 K-as well as to provide rea- 
sonable agreement with the form of the radial distribution 
functions.4’27-3’ (Definition and details are discussed later.) 
SPC parameters were selected after performing 12 MD runs 
for 12 different points in the {B, QH} parameter space and 
then analyzing the thermodynamic and structural results. 
(The parameter A was fixed at a quantum-mechanical de- 
rived value, and Qo was set to - 2Qn .) The complete re- 
sulting parameter set was: ‘4 = 625.5 (kcal A 6)/mol, 
B = 629.4x lo3 (kcal A “)/mol, Qn = 0.41e, Q. 
= - 0.82e. (The dielectric constant in the electrostatic po- 

tential is 1, and the numerical value of the factor necessary to 
produce energies in kcal/mol-with Qo, Qn above and dis- 
tances Y in Angstroms-is 332). 

As for intramolecular geometries, the SPC potential as- 
sumes rigid O-H bond lengths, F, of 1 A, and tetrahedral 
H-O-H bond angles, 3 (cos 3 = - l/3, 3 = 109.4710). 
However, actual enforcement of these geometries varies 
from formulation to formulation and may include soft con- 
straints (restraints) on instantaneous values for 0, the two 
b ‘s and/or on the (nonbonded) H-H distance in each mol- 
ecule. In our MC simulation, intramolecular geometries 
were held rigid. In our MD implementation, we use soft con- 
straints as a computational device in the following form: 

Eintra. (x) =,,,c,,,q, Kk -ZZJ2 

+s,(cose, -cos3;y ) , (11) 

where b,, , b,, , and Bi are the two O-H bond values and the 
H-O-H angle, respectively, in each molecule i. These 
forms of penalty potentials have been used in our nucleic 
acid program, MADPAC, because of noted computational 
and physical advantages. 32*33 Clearly, for small fluctuations 
about target values, the form is unimportant and parameters 
can be chosen to match standard harmonic potentials.‘3 
Here we set S, and S, to values corresponding to experimen- 
tally derived values: S, = 94 kcal/(mol A”) and S, = 42 
kcal/mol, corresponding to the harmonic-potential’param- 
eters of 750 kcal/( mol A2> and 75 kcal/( mol rad2), respec- 
tively.34 

B. The program setup 

Our program sets up water clusters of any given size, 
performs energy minimization or molecular dynamics with 
the potential described above, and analyzes resulting struc- 
tural and energetic properties. For the cluster models, no 
periodic boundary conditions are used, but all pairwise in- 
teractions are computed. A model with boundary conditions 
will be considered later. Our goal here was to test the sim- 
plest possible model with the implicit-Euler/Langevin 
scheme so that long runs could be investigated; boundary 

conditions would complicate and thus slow down the mini- 
mization phase (at each step) considerably. Thus, when we 
incorporate periodic boundary conditions, we anticipate im- 
plementing a’fast multipole method for the electrostatic in- 
teractions3’ Multivariate minimization of the potential en- 
ergy and the dynamics function (in our implicit MD 
scheme) is performed with our large-scale truncated-New- 
ton method.25 The truncated Newton algorithm is especially 
efficient for these water models because the preconditioning 
matrix (roughly, a matrix chosen as a sparse approximation 
to the Hessian in order to accelerate convergence) is the 
9 X 9 diagonal-block matrix corresponding to the intramole- 
cular (soft-constraint) forces. An efficient factorization of 
this matrix can then be performed without the need for vari- 
able reordering.” 

Initial coordinates for an ensemble of water molecules 
are computed as follows. First, we specify the desired num- 
ber of molecules in each coordinate direction (for example, 
n.x = n, = n, = 5 sets up a cubic domain of 125 molecules). 
We also specify a desired O-O distance, d (typically 
d = 2.75 A). Second, we position the oxygens in centers of 
cubes throughout the computational domain. Third, we po- 
sition the two hydrogens of each molecule “pseudorandom- 
ly” in a unit sphere about their oxygen so that B = $ (the 
target tetrahedral value). More generally, arbitrary values 
for 5 and 3 can be specified. This procedure can be summar- 
ized in the following.steps. 

( 1) Initialize n,, n,,, n,, d, 3, 5. 
Set Nmol = n,n,n,. 
( 2 ) Set positions of the oxygens: 
0, = (kd,Zd,md) =, 

k = O,..., n, - 1 

i. I 

I=0 ,... , ~1, - 1 ,fori= l,... ,N,,,. 
m = O,..., n, - 1 

(3 ) Set positions of the hydrogens (see Fig. 1). For each 
molecule i, choose three pseudorandom numbers {a, fi, y} 
uniformly between 0 and 2~. Assume for now that our 0 (of 
the present molecule i) is located at the origin. Set 

FIG. 1. Algorithm for positioning water molecules pseudorandomly in the 
computational domain (see text for details). 
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e3 = (cos a sin /?,sin cz sin /3,cos j3) =, 

and then set the first hydrogen vector, H1, to Hl = Fe3. 
Now construct a right-handed coordinate system {el, e2, 
e3) by choosing 

el = (l/sinj3) (- e3(2),e3( l>,O)T 

and 

e2 =e3Xel. 

Now position the second hydrogen vector, H2, at 

H2 = (T: cos y sin 8)el + (7 sin y sin 8)e2 + (7 cos 8)e3. 

By construction, HlmH2 = [jHl]j jlH211 cos 8. Finally (to 
remove the O-at-origin assumption above), translate the hy- 
drogen vectors by their oxygens: Hl +Hl+O, 
H2cH2+0. 

This procedure is especially convenient for performing 
energy minimizations on water clusters where various start- 
ing configurations are desired. Not only can we set up differ- 
ent spatial arrangements for the same number of molecules 
(e.g., 16 molecules can be positioned in a linear array, a 4 ~4 
“sheet”, or a 4 x 2 x 2 “box”) but the O-O separation pa- 
rameter, d, can be used to disperse the molecules at will. 

IV. ENERGY hllNlMlZATlON RESULTS 

Minimized configurations of water clusters are worth 
examining first to better understand the molecular dynamics 
results that follow. In Table I we summarize results from 
minimization of water clusters of various sizes. Figures 
showing some of these minimized structures can be obtained 
from an author (T. Schlick) upon request. For a given num- 
ber of molecules, different minima were obtained from dif- 

TABLE I. Minimized water clusters. 

. --- 4 \ ‘711,” \ @ 
75 \ i 

FIG. 2. Definition ofthe tilt angle in a linear hydrogen-bonded water dimer. 
The tilt is the angle between the hydrogen bond vector and the bisector of 
the acceptor molecule. 

ferent starting configurations. For each calculated mini- 
mum, the energy, the number of hydrogen bonds (H bonds), 
and the mean values of b and 8 are listed. Additionally, 
geometry for the H bonds is described by the following 
quantities: ( 1) mean values of the 0. * ~0 distance, (2) 
0-H. . .O angle, and (3) tilt angle 4 defined as the angle 
between the H-bond vector and the bisector of the acceptor 
molecule (see Fig. 2). 

The following trends can be identified for the energy- 
minimized water clusters. Intramolecular O-H bonds tend 
to stretch to a value of 1.02 or 1.03 A, and H-O-H angles 
attain values around 105” rather than the 109” (the target). 
Indeed, experimental and theoretical evidence for the ice po- 
lymorphs support the attainment of such O-H distances 
and H-O-H angles, as found in the “isolated” water mole- 
cule [Ref. 12, pp. 79,9 11. Mean 0. * *O distances for hydro- 
gen-bonded molecular pairs range from 2.69 to 2.75 A. 
Mean H-bond angles range from 163” to 176”, exhibiting a 
clear deviation from the ideal, linear H-bond geometry.~Val- 

Intramolecular 
geometry H-Bond Geometry 

# E (kcal/ 
Mol mol) #H Bonds b (A, W) ro..., (A, e,-,...,, (7 K) , 

16 

25 

27 

125 

- 6.95 
- 32.52 
I- 38.87 
- 52.99 

- 75.00 
- 72.49 

-- 172.24 
- 163.24 
- 158.39 

- 154.58 

12 
10 

27 
23 
24 
24 

.-. 266.41 39 
--. 264.79 39 
- 259.14 40 
- 255.39 36 

- 305.20 48 
- 300.83 45 
_ 298.34 46 
- 295.76 45 
-295.50 44 

- 1501.83 228 

1.01 
1.02 
1.02 
1.02 

1.02 
1.02 

1.03 
1.02 
1.02 
1.02 

1.02 
1.02 
1.02 
1.02 

1.02 
1.03 
1.02 
1.03 
1.03 

1.03 

108 2.73 176 
105 2.69 174 
106 2.69 174 
105 2.71 171 

105 
105 

104 
104 
105 
105 

104 
104 
104 
105 

105 
104 
105 
104 
104 

104 

2.75 163 
2.72 169 

2.75 160 56 
2.13 169 41 
2.73 166 50 
2.74 165 49 

2.13 167 44 
2.13 166 48 
2.74 143 52 
2.73 147 43 

2.74 164 
2.73 167 
2.74 145 
2.73 145 
2.74 166 

2.74 146 

22 
35 
29 
37 

56 
39 

51 
50 
50 
50 
47 

50 
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TABLE II. Number of hydrogen bonds per molecule in the energy mini- 
mized cluster of 125 molecules. 

N 

0 
1 
2 
3 
4 
5 
6 

# molecules with 
N H-bonds 

0 
0 
6 

39 
73 

7 
0 

. 

‘. % 

0 
0 
5 

31 
58 

6 
0 

ues of the tilt angles range from 22” (in the dimer) to 56”. All 
these values fall within expected ranges.3*4 In particular, as 
the cluster size grows, we note’increE!es in 0’ * -0 distances, 
largeideviations from linear H-bond angles, and attainment 
of tilt values near 50”. Indeed, the “bent” H-bond geometry 
( u 15” deviation from linearity), Characterizes the more ran- 
dom network of H-bqnds in liquid wate;, where a complex 
mixture of ordered/disordered H-bonded clusters pre- 
vails 11-13.16 

In comparison with the 0. * ‘0, tilt, and energy values 
obtain2d for the rigid’SPC potential applied to a water dimer 
(2,75, A), 26”, - 6.6 kcal/mol, respe&vely,’ we note small 
differences, as expected, from our _ added intramolecular 
flexibility. 

For the 125-molecular cluster, one minimization run 
was performed from-a starting configuration correspoqding 
to a 5 X 5 X 5 cube. The correspondipg minimum structure 
was subsequently used for the molecular dynamic% and 
Monte Carlo simulations. In addition to the structural and 
energetic features of tl$s nijnimum listed in Table I, we de- 
scribe in Table II its H-bond distribution. Even with the 
inevitable surface effects in our droplet model, we can ob- 
serve an overall tetrahedral coordination structure, similar 
to the coordination in ice. To analyze the neighbor distribu- 
tion in more detail, we show in Fig. 3 a histogram of the 
number of neighbors present in an inner subcluster (this re- 
moves surface effects). Good agreement can be noted with 
this description and the one determined experimentally for 
water at 4 0C.1r13~27~28 It is also interesting to note the com- 

6 <- - _ . . “*~:TT’*~‘.“z” r r-c -7 

2 
Distribution of Neighbors 1 

0 66 
9 in a Water Subcluster 

3 6 
i 
c 

3 ,’ 

i 
r 

2 + 

i- I, %-J-LLA 
2 25 3 35 4 45 5 55 6 

FIG. 3. Distribution ofneighbors in an inner water subclusterof the energy- 
minimized water cluster (of 125 molecules). Data were collected by count- 
ing the number of oxygen neighbors in a volume element (bin) R 8, away 
from a central oxygen. -. 
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mon features between our histogram and the O-O distribu- 
tion in the common polymorphs of ice, namely I, II, and III 
(see Fig. 6 of Ref. 13).For these ices, O-O peaks occur 
near 2.75 A (for ice I, II, III), near 3.6 A (ice II), 413 W-(ice 
III), 4.5 A (ice I), and 5.25 A (ice I). The prtiary features 
of O-O distance distributions in low-temperature water 
structures are: ( 1) a first-neighbor peak around 2.75-2.9 A; 
(2) a broad, next-neighbor peak around 4.5 h; (to 5.0 A); 
and (3) a significant group of non-nearest neighbors in the 
interval 3.0-4.0 & with a peak near 3.6 A. Thus, the distort- 
ed H-bond structure along with the increase in H-bond 
lengths permit these more dense arrangements, as found in 
the denser polymorphs of ice. l3 Clearly, results for the MD 
simulation at room temperature will tend to smooth out 
these distiibuti&s and lower the peak heights. 

Iii order to determine an appropriate procedure for cal- 
culating radial distribution functions from our simulatiohs 
of,the droplet modeEthe following analysis was performed. 
In Fig, 4, we show a distribution of the number of molecular 
neighbors each molecule has within a 6 A sphere. For exam- 
ple, there are two (innermost) molecules with 38 molecular 
neighbors in a 6 h; sphere centered around each; there are 9 
molecule; that have 20 neighbors in 6 A spheres surrounding 
each of them. For obtaining reliable statistics over the run, it 
is desirable to average properties for an inner subcluster that 
is not subject to surface effects on one hand, but is sufficient- 
lylarge, on the other, to avpid measuring mere random flue- 
tuations of one subgroup. In particular, to be able to resolve 
well first neighbors and next-neighbor peaks, the subchister 
shotild iriclude molecules that have at least 16 neighbors 
within a 6 %, sphere, corresponding to an approximate tetra- 
hedral-coordination structure. We can thus choose a num- 
be?m (corresponding to the abscissa of Fig. 4)’ and include 
in the simulation averages over all molecules that have m 
neighbors or more within a 6 A sphere. For the energy mini- 
mized structure, the sample size corresponding to Fig. 4 is 
shown in Fig. 5. For example, a choice of m = 30 will select 
20 inner molecules for our sample, while m = 20 will pro- 

r-- r 1 17-1 s~i--p--r-~ , , I.& I 

Llistributtin of Neighbors 

r in the Energy-Minimized Water CLustar 

Number of Neighbors (within a 6.4 Sphere) 

FIG. 4. Distribution of neighbors throughout the energy-minimized water 
cluster of 125 molecules. Data were collected b counting the number of 
oxygen neighbors each molecule had within a 6 %-sphere about its oxygen. 
Thus, there are few mokcules that have many neighbors (only the inner- 
most subgroup) and, correspondingly, few molecules that have few neigh- 
bors (only the surface, outermost subgroup). We use molecules in the right 
“tail” of this distribution for our set of accumulating interatomic distances 
for the MD runs-see Fig. 5. 
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f i‘ 
v) 5. . . . . . . . . . 

Sample .%e for statistics 

.5 
in the Water Cluster 3 iOO~ s . r . 1 . . B . 50 . 

. . . 
l . 4 

0. i 
00.. 

I_)- r I T I 4 I I I 2~ I I 1 ..&J , , , j 
10 20 30 40 50 

Number of Neighbors [within a 6A Sj&re) 

FIG. 5. Size ofthe sample set, corresponding to Fig. 4, when we require that 
only molecules with tn neighbors or more-within a 6 A sphere-will be 
considered. For example, there would be only 10 molecules in our set if we 
require vz = 34 but 64 molecules when m = 20. 

duce 64. All 125 molecules will be considered when m = 7. 
This analysis shows that approximateiy 2/$of the mole- 

cules in the minimized cluster should provide useful infor- 
mation on distribution of first and second neighbors. This 
suggests that qualitative agreement with experimental radial 
distribution functions may be obtained from the simulation 
with this procedure. Since the distributions shown in Figs. 4 
and 5 are likely to change somewhat during the MD run (the 
distribution, analogous to Fig. 4, tends to a sharper, more 
clustered Gaussian-like curve-see Table III), we choose 
the value m = 20. In addition, we impose the restriction that 
our sample size for the statistics contain at least 40 mole- 

TABLE III. Average quantities from the 5 MD runs and 1 MC run. 

H-bond bins 
0 
1 
2 
3 
4 
5 
6 

o---o 
O--H*** 

4 
H-O-H 

O-H 

Starting 
Point 

0 
- 1502 
- 1641 
-- 1502 

0 
0 
5 

31 
58 

6 
0 

2.74 
166 
49 

cules. (If it is less, m is decreased Until the sample size is 40 or 
more.) This procedure resulted in an average sample size of 
45-55 molecules during all our runs. 

V. RESULTS AND DISCUSSION 

One Monte Carlo (MC) simulation and five MD simu- 
lations were performed from the starting point described in 
the previous section. We refer to the explicit/Langevin 
scheme described in Sec. II as “explicit” and to the implicit- 
Euler/Langevin scheme as “implicit.” For the explicit 
scheme, we performed two runs-with a time step of 1 fs 
( lo- I5 s)-for T = 300 K and T = 325 K. For the implicit 
scheme, we performed three runs: T = 300 K, At = 5 fs; 
T = 300 K, At = 10 fs; and T = 325 K, Ar = 5 fs. All these 
runs covered a period of 20 ps. 

The main purpose of the MC simulation was to provide 
further perspective on the explicit versus implicit results. 
The MC run was performed with the force-biased MC tech- 
nique36*37 and covered one .million configurations, after 
200 000 steps of equilibration. The force field was also SPC, 
as in the MD runs, but intramolecular geometry was held 
rigid. As for the MD runs, all pairwise interactions were 
computed, and no boundary conditions were iinposed. The 
same starting point and procedure for accumulating bin data 
for the g(R )‘s were also used. 

Simulation results are summarized in Table III and 
Figs. 6-14. Below, we discuss the following issues in turn: 
thermodynamics, overall structdle, and radial distributidn 
functions. Structural and energetic details, in addition to ra- 

- 752 - 1354 - 1343 

0 0 0 0 0 0 
1 0 0 3 3 0 

18 9 9 19 20 10 
33 31 30 33 32 27 
40 54 52 35 35 56 

9 I I 9 9 7 
1 0 1 1 1 0 

2.85 2:78 2.79 2.90 2.81 2.79 
157 165 165 155 156 164 ’ 
49 48 48 49 49 48 

a All energies are given in kcal/mol, distances in A, and angles in degrees. Error estimates for the energies were 
calculated by the method ofbatch means and are. f 8 kcal/mol for all MD runs and * 7 kcal/mol for the MC 

b?&ages from the last part of the simulation (over 5 ps) . 
, 

j 
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FIG. 6. Energy averages for subintervals during two MD runs and one MC 
run. For the MD runs at 300 K (explicit, and implicit with At = 5 fs), 
points correspond to averages of the total energy during each 0.5 ps interval 
from 5-20 ps. For the MC run, points correspond to averages of the poten- 
tial energy for each 500 OOO-configuration segment. 
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FIG. 7. Kinetic, potential, and total energy accumulated over two 20 ps MD 
runs at T= 300 K: explicit scheme, At = 1 fs; implicit scheme, At = 5 fs. 
Our unit of time, shown here and in all subsequent plots, is 0.05 ps. 

FIG. 8. Kinetic, potential, and total energy, accumulated over the 20 ps MD 
run at T= 300 K with the implicit scheme, At = 10 fs. 

-0 1 2 3 4 5 6 
Number of H-Bonds (per Molecule) 

FIG. 9. Distribution of hydrogen bonding patterns during molecular dy- 
namics-implicit versus explicit scheme. The explicit run corresponds to 
T= 300 K, At = 1 fs, and the implicit run to T= 300 K, At = 5 fs. Data 
were averaged over the 20 ps runs from the number of hydrogen-bonded 
neighbors each molecule had in every configuration. The basic tetrahedral 
coordination structure can be seen from these distributions, with a sharper 
distribution for the implicit run. 
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FIG. 10. Kinetic, potential, and total energy, accumulated over two 20 ps 
MD runs at T= 325 K: explicit scheme. At = 1 fs: implicit scheme, At = 5 
fs. 
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FIG. 11. Number of hydrogen bonds as a function of time for three 20 ps 
MD runs at T= 300 K: explicit scheme, At = 1 fs; implicit scheme, At = 5 
fs; and implicit scheme, Af = 10 fs. The hydrogen-bond classification is de- 
scribed in the text. 
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FIG. 12. Number of hydrogen bonds as a function of time for two 20 ps MD 
runs at T= 325 K: explicit scheme, At = Ifs; implicit scheme, At = 5 fs. 

dial distribution functions, are important for understanding 
the behavior of the implicit scheme in relation to the explicit 
and MC runs. Computational differences will be discussed 
along with the summary, in the last section. 

A. Thermodynamics 
In Table III, we provide mean values of the energy for 

each run: kinetic, potential, nonbonded, and total. These 
means were averaged over the run period 5-20 ps. Error 

~lquid W.HLV &dial ~irtribution Functions. TsBXJK 

D,,hCl,.” ml* 

oxygen-oxygen 

I.5 1.0 

FIG. 13. Computed radial distribution functions for O-O, O-H, and 
H---H from two MD runs at 300 K (explicit, At = 1 fs; implicit, At = 10 fs) 
and MC, shown against the latest x-ray diffraction data of Soper and Phil- 
lips [Chem. Phys. 107,47 (1986) 1. Distances are given in Angstroms. De- 
tails of the computations are provided in the text. Results from the implicit 
MD run with At = 5 fsare almost identical to the 10 fs run, so correspond- 
ing curves are omitted for clarity. 
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FIG. 14. Computed radial distribution functions for O-O, O-H, and 
H-H from two MD runs at 325 K (explicit, At = 1 fs; implicit, At = 5 fs), 
shown against the x-ray results of Soper and Phillips. Distances are given in 
Angstroms. 

estimates for the energies were calculated by the method of 
batch means3’*” and represent two standard deviations. 
These estimates are f 8 kcal/mol for all the MD runs and 
f 7 kcal/mol for the MC run. The resulting block averages 

for the MC run and two representative MD runs are shown 
in Fig. 6. For comparison, corresponding energy values for 
the starting configuration are also listed in Table III. 

The following trends can be noted. First, the energy dif- 
ferences between the explicit and implicit runs are large. All 
values for the implicit scheme are lower (see Figs. 6-S). This 
behavior is expected, as the high-frequency modes are effec- 
tively damped out by the method. Second, larger relative 
differences occur for the kinetic energy rather than the po- 
tential energy components. In other words, more kinetic en- 
ergy than potential energy is dissipated by the implicit 
scheme. 0verall;the configurations resulting from the im- 
plicit scheme stay closer to the initial structure, while greater 
deviations can be observed for the explicit scheme. This can 
also be seen from Fig. 9. The average potential energy from 
the MC run is close to the potential energy of the explicit run 
at 300 K. 

Another important observation is that energies from the 
implicit simulation with a time step of 10 - I4 s (one order of 
magnitude higher than typical time steps) are very close to 
results obtained with l/2 that value (see Figs. 7 and 8). This 
demonstrates the high stability of the implicit-Euler scheme. 
Somewhat higher energies are predicted from the implicit 
run with the larger time step, and this can be explained by the 
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fact that greater “jumps” in the configuration/time space 
bring about larger perturbations from the initial structure. 
In the minimization phase, a larger At can produce a solu- 
tion x” + ’ more distant than x” in configuration space. 

When comparing the two corresponding sets of MD 
runs at different temperatures, we note the expected in- 
creases in energies for the higher-temperature simulations 
(see Figs. 7 and 10). In particular, the implicit scheme pro- 
duces a larger percent of increase in the kinetic component. 

The total energy values appearing in parentheses for 
each run in Table III are averages obtained in the last part of 
the simulation. From these values, we can roughly estimate 
heat capacities at constant pressure for the two schemes. We 
obtain the values C, = 30 cal/(mol K) from the explicit 
scheme, and C, = 12 cal/(mol K) from the implicit 
scheme. The experimental value in this temperature range of 
300-325 K is nearly constant and has a value of 18 cal- 
/(mol K).” This experimental value serves as an upper 
bound, because the heat capacity for a droplet is expected to 
be lower than for the bulk liquid. This suggests that classical 
Newtonian molecular dynamics tends to overestimate the 
accessible energy, while quantum effects, some of which can 
be generally mimicked by our implicit scheme,” produce 
lower expected energies. In the case of these measured heat 
capacities, the value of C, estimated from the implicit 
scheme comes to greater agreement to the experimental val- 
ue than Cp from the explicit scheme. This provides a good 
qualitative test for the amount of damping introduced by our 
implicit formulation. 

B. Overall structure 
The structural features summarized in Table III and 

Figs. 9 and 11-14 explain the differences in results among 
the various simulations, as described above. Basically, the 
damping in the explicit scheme produces configurations that 
have closer structural similarities to the initial structure. The 
explicit MD and MC runs produce similar configurations. 

The number of H-bonds, as defined by our criteria in the 
previous section, is 228 for the initial structure and averages 
207, 213, and 225 for the MC, explicit, and implicit runs, 
respectively, at room temperature. Thus, a greater number 
of H bonds is retained in the implicit MD (see Figs. 11 and 
12). In terms of the distribution of the number of H bonds 
per molecule (see Table III), we see a greater percentage of 
molecules involved in 4 H-bonds for the implicit than for the 
explicit (54% vs 40%). These distributions can be seen 
more clearly in Fig. 9. The MC H-bond distribution is very 
similar to that of the explicit MD. The mean H-bond 0. * -0 
lengths are 2.85 A for the explicit scheme and 2.9 w for the 
MC, compared to 2.79 w for the implicit scheme and 2.74 A 
for the minimum structure. Recall that our intramolecular 
flexibility permits closer approaches through accommoda- 
tion of nearby geometry. For the higher-temperature runs, 
these 0. * -0 values increase slightly, as expected. As for the 
typical H-bond angles, results from the explicit scheme and 
the MC predict over 20” bending from the ideal.linear ar- 
rangement, while the implicit scheme predicts a 15” bending. 
Both these values fall well within ranges observed for liquid 
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water. All H-bond tilt angles favor values of 48“-49”. Intra- 
molecular geometry in the MD runs is uniformly character- 
ized by H-O-H bond angles of 104”-105” and O-H bond 
lengths of 1.02-103 A. 

C. Radial distribution functions 

In Figs. 13 and 14 we show the computed radial distri- 
bution functions from the explicit, implicit, and MC runs at 
300 and 325 K. As discussed earlier, bin data were accumu- 
lated for a subcluster at each time-step configuration. Typi- 
cally, more than l/3 of the entire cluster of 125 molecules 
was considered. Bin widths for all the MD runs were 0.125 A 
for O-O, and 0.25 A for O-H and H-H. For the MC run, 

’ since only cumulative data were obtained, all bin widths 
were 0.125 A. 

The radial distribution functiong(R) measures how the 
local density of neighbors around a given molecule differs 
from the “bulk” density. It thus provides a good measure of 
positions and degree of occupancy of molecular neighbors. 
Various x-ray and neutron diffraction experiments have pro- 
vided data to estimate interatomic distances in liquid water 
for O-O, O-H, and H-H pairs.27-31 The experimentally 
derived value, pAB (R ), represents the average number of 
atomic neighbors B at a distance R from atom A of a central 
molecule. The function known as g,, (R ) is obtained by di- 
vidingp (R) byp,, the bulk density (expressed as number of 
molecules per unit volume). Thus, a plot of g(R) vs R is 
greater than one where the local density is greater than the 
bulk density, and it should tend to one as R increases. 

From the MD and MC simulations, we accumulate bin 
data for a function DAB (R ), defined as the average number 
of atomic neighbors B in a AR volume element where AR is 
our chosen bin width. For comparison with p( R), p(R) is 
divided by V(R), the bin volume (V(R) = f 
P[ R 3 - (R - AR) 3]). Furthermore, for comparison with 
the experimental functiong( R > = p (R )/pa, division by&, a 
normalizing factor, is needed: g(R) = B(R)/[ V(R)@,]. 
We estimate & for the droplet by calculating the average 
number of molecules per unit volume, from a central mole- 
cule, at increasing values of R. These numbers tend to some 
value just before surface effects enter (and the local density 
goes down monotonically). The values used in the present 
study are 0.032 molecules/( A)3 for the explicit scheme and 
the MC, and 0.038 molecules/(A)3 for the implicit scheme. 
These numbers are different because the density distribu- 
tions are different (see Fig. 9). 

The experimental curves for g( R ) from the most recent 
works of Soper and Phillips”’ for O-O, O--H, and H-H 
are shown as solid curves in the radial-distribution-function 
plots in Figs. 13 and 14. These functions support the view 
that liquid water molecules form a connected network of H 
bonds with a local tetrahedral coordination that undergoes 
continuous architectural rearrangements. Changes result 
from the competition between compact, local H-bond ar- 
rangements (as in the ices) and the many ways of forming 
longer-range interactions between various H-bonded sub- 
clusters. 
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The main features of the O-O distribution is a first 
peak centered at -2.8 A, corresponding to the nearest 
neighbors in a tetrahedrally coordinated arrangement. A 
second, broader peak iscentered at about 4.5 A, correspond- 
ing to second-neighbor separations in the same tetrahedral 
arrangement. The two highest peaks in the O-H curves 
occur at values near 1.85 and 3.35 A. They correspond to the 
two O-H distances between the 0 of the acceptor molecule 
and the two H’s of the donor molecule. Thus for the H-bond 
sequence 

P 
O***H,--O ’ 

the first peak corresponds to O-H,, and the second peak 
corresponds to O-H,. Lower peaks occur for O-H dis- 
tances between second molecular neighbors. The sharp, first 
O-H peak is consistent with a near-linear H-bond arrange- 
ment. In correspondence to the geometry described above, 
H-H peaks occur near 2.4 and 3.8 A and are associated 
with the two distances originating from one H, of the accep- 
tor molecule of an H-bonded pair: one to the donor H (H, 
above), and one to the nondonor H (H, above), of the donor 
molecule. 

Our computed g(R)‘s for the different runs are com- 
pared with the experimental curves in Figs. 13 and 14. The 
functions obtained from the two implicit MD runs with time 
steps of 5 fs and 10 fs were almost identical, so one represen- 
tative set of curves is shown. No smoothing was applied to 
these curves; points were plotted at the bin points and then 
connected by dashed lines. 

Overall, we can note a good agreement between the ex- 
plicit and experimental results. The O-O curve is particu- 
larly well reproduced since bin widths were small. (Coarser 
resolution of the O-H and H-H bins was used to reduce 
the volume of data generated from the MD runs). Surface 
effects of the droplet model begin to enter at about 6 A, but 
up to that point locations and peak heights are reproduced 
well. 

The computed g(R)% from the MC run also exhibit 
good agreement with the experimental curves. These MC 
results are very similar to results of the explicit MD run. 
Since rigid intramolecular geometry was used in the MC 
run, the first O-O peak occurs at a slightly higher value of 
R than for the MD runs. The smaller bin widths used for 
O-H and H-H in the MC run produced smoother curves. 
The second O-O peak from MC is, however, somewhat 
flatter than that from our MD. Nonetheless, these basically 
similar results from two different computational techniques 
suggest that the droplet model, with the associated statistical 
procedure for accumulating bin data, is the major factor in- 
fluencing the results. The MD technique and intramolecular 
flexibility may produce “finer tuning” and finer resolution of 
the data. 

Results from the implicit runs exhibit radial distribution 
functions with different patterns than the MC and explicit 
MD: higher first peaks and lower populations of neighbors 
between the first two peaks. What is crucial for correct inter- 
pretation of these results is realizing that parameters of the 
SPC model were optimized to reproduce agreeable radial 
distribution functions.4 Results with SPC by the implicit 

scheme demonstrate that we indeed obtain the expected be- 
havior: damping high-frequency modes. This is expressed in 
a more compact and ordered H-bond network, where the 
effects of the long-range competition between various sub- 
clusters-that lead to looser H bonds and more flexible geo- 
metries for H-bond networks-are reduced. Clearly, in or- 
der to get a better agreement between the implicit simulation 
results and the experimental g(R)%, reparametrization of 
the water potential is required, as was done in the explicit 
case. Incorporation of periodic boundary conditions may 
further improve results. Nonetheless, the better agreement 
we obtain in the estimates for the heat capacity C, (from 
AE /AT) with the implicit scheme suggests that the scheme 
may provide better estimate of relative energy differences for 
different simulation temperatures. 

As for differences in the radial distribution functions 
among the two different temperatures and among the two 
different time steps in the implicit scheme, only small differ- 
ences can be observed. At higher temperatures (Fig. 14), 
peak heights are lowered, and the distribution is smoothed 
out further, indicating that the tetrahedral coordination in 
water is weaker at higher temperatures. Theg( R)‘s obtained 
from the two implicit runs produce almost identical distribu- 
tions. Again, this illustrates the high stability of the implicit 
Euler discretization. 

VI. SUMMARY 

Our liquid water simulations with the SPC pair poten- 
tial by the implicit-Euler/Langevin versus the Verlet/Lan- 
gevin scheme and MC have provided interesting answers to 
the following questions. 

( 1) Can a simple model be formulated that will be com- 
putationally feasible for the implicit scheme and still provide 
good agreement with available physical data? The water 
droplet model has here been tested as a first approach. 

(2) Will the implicit scheme be computationally stable 
over time steps one order-of-magnitude greater than the ex- 
plicit scheme? 

(3) What will the energetic and structural differences 
between the two schemes be? In particular, will the implicit 
scheme mimic some general aspects of quantum mechanics 
by effectively damping the high frequency modes? 

. (4) What will the computational differences between 
the two schemes be? 

The water droplet model as formulated, along with the 
procedure forchoosing an adequate subcluster from which 
to calculate interatomic distances; has proven successful at 
resolving well the first two peaks of the radial distribution’ 
functions. Surface effects begin to enter only after a 6 8, radi- 
us for the 125-molecular cluster. A larger cluster will un- 
doubtedly increase the range of “bulk’‘-property resolution, 
and incorporation of periodic boundary conditions should 
further improve results. 

Numerical stability and computational feasibility ofthe 
implicit-Euler/Langevin scheme has been demonstrated for 
time steps of 5 and 10 fs. This behavior is vastly different 
from that of explicit schemes, for which a time step greater 
than 1 fs generally produces numerical instability. This sug- 
gests that the method has potential for biomolecular applica- 
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tions where the key motions of interest are typically slower 
and less frequent than the high-frequency vibrational modes. 
(The latter modes dictate very fine time resolutions in nu- 
merical schemes. ) Of course, the effects of high-frequency 
damping will have to be monitored closely, since in some 
cases the high-frequency modes may facilitate collective mo- 
tions of the system. Thus, application of the implicit-Euler/ 
Langevin scheme to biomolecules should be targeted to an- 
swer specific conformational questions, for which it may be 
more suitable than explicit schemes. Finer resolutions of the 
motion can then be explored with small time-step simula- 
tions and no (or little) damping. 

In comparing thermodynamic and structural properties 
obtained from the implicit and explicit schemes, we observed 
the expected damping of the high-frequency vibrational 
modes by the implicit scheme. Average energies are much 
smaller for the implicit scheme, and larger percentages of 
energy differences occur in the kinetic, rather than potential, 
energy components. The water structures simulated by this 
damping tend to be more compact, involving more rigid hy- 
drogen-bonding networks. There is less competition be- 
tween the local, more ordered structures of tetrahedrally co- 
ordinated hydrogen bonds and the various less-ordered 
subclusters of hydrogen-bonded networks. This is exhibited 
by sharper and higher first-neighbor peaks in the radial dis- 
tribution functions and smaller occupancy of the region be- 
tween the first and second peaks. Since the SPC parameters 
were optimized-by an explicit molecular dynamics simula- 
tion-to reproduce accurately experimentally derived radi- 
al-distribution-function curves, the resulting effective pair 
potential already incorporates quantum-mechanical effects. 
Indeed, we obtained very good agreement with these curves 
by the explicit integration scheme and by the MC. While 
results from the implicit runs produced the differences noted 
above, they provided better estimates for the heat capacities 
C, than the explicit scheme. This suggests that relative ener- 
gy differences may be better computed by the implicit for- 
mulation, where the thermally accessible energy per mode is 
not equally partitioned, as in classical statistical mechanics, 
but rather partitioned approximately in a quantum-like fash- 
ion. 

Finally, in regard to computational performance, we 
mention that our main focus in this work was to investigate 
differences in thermodynamic and structural properties re- 
sulting from the explicit/Langevin and implicit/Langevin 
formulations; thus, no particular effort was devoted to im- 
proving the competitiveness, in terms of computer time, of 
the implicit scheme. Recall that work per iteration is greater 
in our implicit scheme because minimization of 4, is required 
at every step (see Sec. II). However, only a few iterations 
were required at every step because we have a good initial 
guess for x” + ‘. For At = 5 fs, two or three iterations of mini- 
mization were typically required in every dynamic iteration, 
while At = 10 fs resulted in about eight minimization itera- 
tions per step. For the same total simulation time of 20 ps, 
20 000 iterations were required with the explicit scheme, 
while 4 000 and 2 000 were required for the two implicit 
schemes, respectively. Overall, this resulted in a factor of 5 of 
additional computation time for the implicit scheme. We 

expect to make this factor far smaller with future improve- 
ments and variations in our minimization algorithm. 

Nonetheless, our results demonstrate that it is not nec- 
essary to run the implicit simulation for as long as the explic- 
it one; the various thermodynamic and geometric averages 
settle down much more rapidly in the implicit than in the 
explicit run. In particular, we obtain the same radial distri- 
bution functions in the implicit scheme after 5 ps, 10 ps, and 
so on, whereas the curves from the explicit scheme produce 
greater variations for such cumulative subintervals. This 
finding supports our original motivation for searching for a 
numerical formulation that permits larger time steps and 
damps out high-frequency modes: certain “bulk” properties 
of the system can be observed more rapidly, without a fine 
resolution of all motions involved. 

These physical and computational issues will be investi- 
gated further through applications to other physical systems 
for which experimental data are available. One such applica- 
tion, simple structural transitions and reproduction of tran- 
sition rates in butane, is currently underway. 
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