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1 Gravitational instability in an expanding universe

As we have seen, density perturbations smaller than the Hubble distance can grow only if they are not
pressure-supported. For the baryonic matter, the loss of pressure support happens abruptly at the time of
decoupling, when the Jeans length drops by a factor of ∼ 10−5. Recall that the Jeans length is set by the
ability of pressure support traveling at the sound speed to counteract gravitational collapse. For a density
perturbation to be stabilized by pressure against collapse, it must be smaller than a size given by the relation

λJ ∼ cstdyn ∼ cs
(
c2

Gū

)1/2

. (1)

Overdense regions larger than the Jeans length collapse under their own gravity, while overdense regions
smaller than the Jeans length oscillate in density as stable sound waves.

For the dark matter, the loss of pressure support is more gradual, as the thermal energy of the dark matter
particles drops below their rest energy. If the dark matter (WIMPs, presumably) has mass mW c

2 � 2 eV, it
would have become nonrelativistic well before the time of matter-radiation equality at z ∼ 3300.

Once the pressure and hence the Jeans length of some component of the universe becomes negligibly small,
it isn’t necessarily the case that density fluctuations in that component can grow exponentially with time,
however. This is because our earlier analysis assumed that the universe was static as well as pressureless. In
the real universe, we need to consider the effects of expansion.

In an expanding universe described by the Friedmann equation, the timescale for the growth of a density
perturbation by self-gravity,

tdyn ∼
(

1

Gū

)1/2

, (2)

is comparable to the timescale for expansion,

H−1 ∼
(

1

Gū

)1/2

(3)

(we have left out the numerical factors in both expressions).

Self-gravity causes overdense regions to become more dense with time, while the global expansion of the
universe causes them to become less dense. Because the timescales for these processes are similar, we need
to take both of them into account when computing the time evolution of a density perturbation.

We will do a Newtonian analysis of this problem. Suppose we are in a universe filled with pressureless
matter with mass density ρ̄. As the universe expands, the density decreases as ρ̄(t) ∝ a(t)3. Within a
spherical region of radius R a small amount of matter is added or removed, so that the density in the sphere
is

ρ(t) = ρ̄[1 + δ(t)], (4)
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with |δ| � 1. We are assuming that the radius R is small compared to the Hubble volume and large
compared to the Jeans length.

The total gravitational acceleration at the surface of the sphere will be

R̈ = −GM
R2

= − G

R2

(
4π

3
ρR3

)
= −4π

3
Gρ̄R− 4π

3
G(ρ̄δ)R. (5)

We can then write the equation of motion for a point on the surface of the sphere as

R̈

R
= −4π

3
Gρ̄− 4π

3
Gρ̄δ. (6)

The mass inside the sphere is

M =
4π

3
ρ̄[1 + δ(t)]R(t)3, (7)

and it must remain constant as the sphere expands. So

R(t) ∝ ρ̄(t)−1/3[1 + δ(t)]−1/3, (8)

or, since ρ̄ ∝ a−3,
R(t) ∝ a(t)[1 + δ(t)]−1/3. (9)

This tells us that if the sphere is slightly overdense, its radius will grow slightly less rapidly than the scale
factor, while if it is under dense it will grow slightly more rapidly than the scale factor.

Taking two time derivatives of Equation 9, we get

R̈

R
=
ä

a
− 1

3
δ̈ − 2

3

ȧ

a
δ̇, (10)

when |δ| � 1. Combining this with Equation 6, we find

ä

a
− 1

3
δ̈ − 2

3

ȧ

a
δ̇ = −4π

3
Gρ̄− 4π

3
Gρ̄δ. (11)

If δ = 0, this reduces to
ä

a
= −4π

3
Gρ̄, (12)

which is the acceleration equation for a homogeneous and isotropic universe containing only pressureless
matter.

We then subtract Equation 12 from Equation 11 to leave only the terms involving δ. This gives us the
equation describing the growth of small density perturbations:

−1

3
δ̈ − 2

3

ȧ

a
δ̇ = −4π

3
Gρ̄δ, (13)

which is
δ̈ + 2Hδ̇ = 4πGρ̄δ. (14)

In a static universe with H = 0, this reduces to

δ̈ = 4πGρ̄δ (15)
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which we derived in Lecture 16 (Equation 11) under the assumption of a static universe. The additional
term proportional to Hδ̇ is sometimes called the “Hubble friction” term, since it slows the growth of density
perturbations in an expanding universe.

A fully relativistic calculation of the growth of density perturbations gives the similar expression

δ̈ + 2Hδ̇ =
4πG

c2
ūmδ. (16)

This can be applied to universes that include components with non-negligible pressure, such as radiation or
a cosmological constant. It is important to remember that in such universes δ represents the fluctuation in
the density of matter only, however:

δ =
um − ūm
ūm

, (17)

where the average energy density of matter ūm(t) might be only a small part of the total average density
ū(t).

Rewritten in terms of the matter density parameter

Ωm =
ūm
uc

=
8πGūm
3c2H2

, (18)

Equation 16 is

δ̈ + 2Hδ̇ − 3

2
ΩmH

2δ = 0. (19)

During epochs when the universe isn’t matter-dominated, density perturbations in the matter don’t grow
rapidly in amplitude. For example, in the radiation-dominated phase, Ωm � 1 andH = 1/(2t), so Equation
19 is

δ̈ +
1

t
δ̇ ≈ 0, (20)

which has the solution
δ(t) ≈ B1 +B2 ln t. (21)

So in the radiation-dominated era, density fluctuations grew only at a logarithmic rate.

We can also consider the far future. If the universe is dominated by a cosmological constant, the matter
density parameter will become negligibly small, the Hubble parameter will have the constant valueH = HΛ,
and Equation 19 will have the form

δ̈ + 2HΛδ̇ ≈ 0. (22)

The solution to this is of the form
δ(t) ≈ C1 + C2e

−2HΛt. (23)

In an epoch of the universe dominated by the cosmological constant, fluctuations in the matter density
approach a constant fractional amplitude, while the average matter density decreases exponentially.

Fluctuations in the matter density can grow significantly only when the universe is matter-dominated. If the
universe is flat with Ωm = 1, then H = 2/(3t) and Equation 19 is

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0. (24)

We will guess that the solution to this equation has the power law form Dtn. Putting this guess into the
equation, we have

n(n− 1)Dtn−2 +
4

3t
nDtn−1 − 2

3t2
Dtn = 0, (25)
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which is
n(n− 1) +

4

3
n− 2

3
= 0. (26)

The two possible solutions to this equation are n = −1 and n = 2/3. Therefore the general solution for the
time evolution of density perturbations in a flat, matter-only universe is

δ(t) ≈ D1t
2/3 +D2t

−1. (27)

The values of D1 and D2 are determined by the initial conditions for δ(t).

The decaying mode proportional to t−1 will eventually become negligible compared to the growing mode
proportional to t2/3. At this point, the density perturbations in a flat, matter-only universe will grow at the
rate

δ ∝ t2/3 ∝ a(t) ∝ 1

1 + z
(28)

as long as |δ| � 1.

For different cosmological parameters, it can be shown that density perturbations grow according to

D+(a) ∝ H(a)

H0

∫ a

0

da

[Ωm/a+ ΩΛ/a2 − (Ωm + ΩΛ − 1)]3/2
, (29)

where D+(a) is the growing solution to Equation 19. For non-Einstein-de Sitter cosmologies, we do not
find δ(t) ∝ a(t), but the qualitative behavior is similar. In particular, fluctuations were able to grow by a
factor ∼ 1000 from the epoch of recombination at z ∼ 1000 to today.

At the present time δ � 1 on scales of clusters of galaxies (∼ 2 Mpc), and δ ∼ 1 on scales of superclusters
(∼ 10 Mpc). Since the density fluctuations have grown by a factor of ∼ 1000 since z ∼ 1000, we would
expect δ & 10−3 at recombination in order to have non-linear (δ � 1) structures today. This leads us to
expect that the anisotropies in the CMB should also be of order ∆T/T & 10−3. However, the observed
amplitude of the fluctuations is ∆T/T ∼ 10−5; density fluctuations of this magnitude cannot have grown
enough to produce the structures we see today.

The solution to this problem is the dominance of dark matter, which allows the process of structure forma-
tion to begin earlier. The CMB anisotropies (at least on scales of less than ∼ 1◦), provide information on
the density contrast of baryons. Perturbations in the baryonic matter couldn’t begin to grow until after de-
coupling, while the dark matter perturbations could grow as soon as the universe became matter-dominated.
At decoupling, the baryons fell into the already existing gravitational wells of dark matter. This resolves at
least part of the problem of how structure formed so early in the history of the universe.

When an overdensity reaches δ ∼ 1, the linear analysis we have carried out above no longer applies. At that
point the overdensity breaks free from the Hubble flow and collapses, eventually reaching virial equilibrium
as a gravitationally bound structure. If the baryons in the structure are able to cool efficiently, they will
radiate energy and fall to the center where they eventually form stars, becoming the visible parts of the
galaxies we see today. The less concentrated dark matter forms the halo in which the stellar component
of the galaxy is embedded. The problem of structure formation is generally treated with large numerical
simulations, in which the matter in the universe is modeled as a distribution of point sources interacting via
Newtonian gravity. We will discuss these simulations in more detail later.

2 The correlation function

As with the cosmic microwave background, we are interested not in the under- or overdensity of a particular
point in the universe, but in the statistical properties of the density fluctuations on different scales. We will
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discuss two related statistical descriptions of the density field.

Redshift surveys show that galaxies are not randomly distributed in space; instead they are clustered in
groups, clusters and superclusters. This means that the probability of finding a galaxy at location x is not
independent of whether or not there is a galaxy in the vicinity of x. We are more likely to find a galaxy near
another galaxy than at an arbitrary location.

We describe this by considering two points x and y, and two volume elements dV around these points. If
n̄ is the average number density of galaxies, the probability of finding a galaxy in the volume element dV
around x is

P1 = n̄ dV, (30)

independent of x if we assume that the universe is statistically homogenous. We choose dV such that
P1 � 1, so that the probability of finding two or more galaxies in the volume element dV is negligible.

The probability of finding a galaxy in the volume element dV at location x and simultaneously finding a
galaxy in the volume element dV at location y is then

P2 = (n̄ dV )2[1 + ξg(x, y)]. (31)

If the distribution of galaxies was uncorrelated, the probability P2 would just be the product of the proba-
bilities of finding a galaxy at each of the locations x and y in a volume element dV , so P2 = P 2

1 . Since the
distribution is correlated, this does not apply, and we modify the probability as shown in Equation 31. The
quantity ξg(x,y) is the two-point correlation function.

Similarly, we can define the correlation function for the total matter density:

〈ρ(x)ρ(y)〉 = ρ̄2〈[1 + δ(x)][1 + δ(y)] (32)

= ρ̄2(1 + 〈δ(x)δ(y)〉)
= ρ̄2[1 + ξ(x,y)],

since 〈δ(x)〉 = 0 for all locations x.

Since the universe is homogeneous, the correlation function ξ can depend only on the difference x − y
and not on x and y individually. ξ can also depend only on the separation r = |x − y| and not on the
direction of the separation vector x − y, since we assume the universe is statistically isotropic. Therefore
ξ = ξ(r) is simply a function of the separation between two points, and the correlation function is a measure
of the excess probability (relative to a Poisson distribution) of finding an object in a volume element dV at
a separation r from another randomly chosen object.

This can be seen when the correlation function is written

ξ(r) =
DD(r)∆r

RR(r)∆r
− 1, (33)

where DD(r)∆r is the number of galaxy pairs with separations in the range r ± ∆r/2 and RR(r)∆r is
the number that would be expected if galaxies were randomly distributed in space. Galaxies are said to be
positively correlated on a scale r if ξ(r) > 0, to be anticorrelated if ξ(r) < 0, and to be uncorrelated if
ξ(r) = 0.

The correlation function can be measured from spectroscopic surveys of the redshifts of galaxies. It is found
to be well described by a power law

ξg =

(
r

r0

)−γ
, (34)
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where r0 is the correlation length. Galaxies with separations larger than the correlation length are relatively
uncorrelated.

The correlation length r0 and slope γ may vary for different populations of galaxies; in particular, brighter
and redder galaxies are found to be more strongly clustered than bluer and fainter galaxies. An example of
the correlation function is shown in Figure 1. The best-fitting correlation function for this sample (luminous
red galaxies from the Sloan Digital Sky Survey) gives r0 = 5.59h−1 Mpc and γ = 1.84. The exponent γ is
related to the initial spectrum of density fluctuations.

Figure 1: The correlation function for luminous red galaxies from the Sloan Digital Sky survey.
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