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1 The power spectrum

1.1 The horizon

Linear perturbation theory shows that fluctuations grow independently of each other on all scales, or for all
wave numbers. This is true in the framework of general relativity as well as in the Newtonian case, as long
as the fluctuation amplitudes are small. At very early times, fluctuations with a comoving length scale λ
may be larger than the comoving horizon

dh,c(t) =

∫ t

0

c dt

a(t)
, (1)

where the c subscript indicates that this is the comoving horizon distance. Note that this differs by a factor
of a(t) from the proper horizon distance we calculated in Lecture 8.

We define zent(λ) as the redshift at which the comoving horizon is equal to the comoving length scale λ,

dh,c(zent(λ)) = λ. (2)

Only for redshifts z < zent(λ) does the horizon become larger than the scale under consideration. It is
common to say that at zent(λ) the perturbation under consideration “enters the horizon,” but in fact the
process is the opposite: the horizon outgrows the perturbation.

Relativistic perturbation theory shows that density fluctuations of scale λ grow as long as λ > dh,c, as a2

if radiation dominates (z > zeq) or as a if matter dominates (z < zeq). This is because free-streaming
particles or pressure gradients can’t impede growth on scales larger than the horizon length, since physical
interactions cannot extend to scales larger than the horizon size.

This has important effects on the transfer function, which we will consider qualitatively. If a perturbation
enters the horizon in the radiation-dominated phase, i.e. zent > zeq, it cannot grow until z < zeq because,
as we have seen, the expansion rate in the radiation era prohibits efficient growth of perturbations. If the
perturbation enters the horizon during the matter-dominated epoch, i.e. zent < zeq, it will grow as described
earlier, with δ ∝ D+(t).

This means that a length scale λeq is singled out, for which

zeq = zent(λeq). (3)

In other words, λeq is the comoving horizon size at equality, which is

λeq = dh,c(zeq) ' 12 (Ωm,0h
2)−1 Mpc. (4)

Density fluctuations with λ > λeq enter the horizon during the matter-dominated era, and therefore their
growth is not impeded by a phase of radiation dominance. In contrast, density fluctuations with λ < λeq
enter the horizon when radiation dominates. They will not grow significantly as long as z > zeq; only once
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the universe becomes matter-dominated will they start to grow again. This means that by the present time
they have grown by a smaller factor than the perturbations with λ > λeq.

To summarize, perturbations which enter the horizon during the radiation era grow as

δ =


a2 z > zent
ln a zeq < z < zent
a z < zeq.

(5)

This means that relative to a perturbation that enters the horizon during the matter-dominated epoch, the
smaller perturbation is suppressed by a factor ∼ (aeq/aent)

2, where we have neglected the logarithmic
growth for zeq < z < zent. This is shown in Figure ??.
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Figure 1: The growth of perturbations that enter the horizon during the radiation era is suppressed by a
factor ∼ (aeq/aent)

2.

1.2 The transfer function

Recall that the transfer function T (k) modifies the power spectrum:

P (k) ∝ kn T 2(k). (6)

The quantitative calculation of the effects discussed above allows us to compute the transfer function. In
practice this is complicated and so is done numerically, but two limiting cases can be treated analytically:

T (k) ≈ 1 for k � keq = 1/λeq (7)

T (k) ≈ (kλeq)−2 for k � keq = 1/λeq. (8)

Perturbations with k � keq (λ � λeq) are able to grow during the entire radiation era, because they
are outside the horizon. Therefore they retain their original spectrum, and T (k) ≈ 1. Perturbations with
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k � keq enter the horizon during the radiation era and are suppressed until matter domination. P (k) is
therefore suppressed for k � keq, with the largest suppression occurring for the largest wavenumbers,
which enter the horizon at earlier times.

This theory predicts the shape of the power spectrum, but observations are necessary to measure its am-
plitude. A compilation of measurements of the present day power spectrum is shown in Figure ??. For
small k the initial power spectrum is unmodified: P (k) ∝ P0(k) ∝ kn with n ≈ 1. For large k,
P (k) = P0(k)T (k)2 ∝ knk−4, so the power spectrum is strongly suppressed.

As we saw in Section 1.1 of Lecture 18, the root mean square mass fluctuations δM/M ∝ (k3P (k))1/2 ∝
M−(n+3)/6. The suppression of the power spectrum for large k means that mass fluctuations are largest in
amplitude for the smallest mass scales. This implies that in a universe filled with cold dark matter, the first
objects to form are the smallest, with galaxies forming first, then clusters, then superclusters. This is known
as the bottom-up theory of galaxy formation, and is consistent with our observation that galaxies have δ � 1
while superclusters have δ ∼ 1 and are just beginning to collapse.
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We present a method for measuring the cosmic matter budget without assumptions about spec-
ulative Early Universe physics, and for measuring the primordial power spectrum P∗(k) non-
parametrically, either by combining CMB and LSS information or by using CMB polarization. Our
method complements currently fashionable “black box” cosmological parameter analysis, constrain-
ing cosmological models in a more physically intuitive fashion by mapping measurements of CMB,
weak lensing and cluster abundance into k-space, where they can be directly compared with each
other and with galaxy and Lyα forest clustering. Including the new CBI results, we find that CMB
measurements of P (k) overlap with those from 2dF galaxy clustering by over an order of magnitude
in scale, and even overlap with weak lensing measurements. We describe how our approach can
be used to raise the ambition level beyond cosmological parameter fitting as data improves, testing
rather than assuming the underlying physics.

I. INTRODUCTION

What next? An avalanche of measurements have
now lent support to a cosmological “concordance model”
whose free parameters have been approximately mea-
sured, tentatively answering many of the key questions
posed in past papers. Yet the data avalanche is showing
no sign of abating, with spectacular new measurements
of the cosmic microwave background (CMB), galaxy clus-
tering, Lyman α forest (LyαF) clustering and weak lens-
ing expected in coming years. It is evident that many
scientists, despite putting on a brave face, wonder why
they should care about all this new data if they already
know the basic answer. The awesome statistical power of
this new data can be used in two ways:

1. To measure the cosmological parameters of the con-
cordance model (or a replacement model if it fails)
to additional decimal places

2. To test rather than assume the underlying physics

This paper is focused on the second approach, which has
received less attention than the first in recent years. As
we all know, cosmology is littered with “precision” mea-
surements that came and went. David Schramm used to
hail Bishop Ussher’s calculation that the Universe was
created 4003 b.c.e. as a fine example — small statistical
errors but potentially large systematic errors. A strik-
ing conclusion from comparing recent parameter estima-
tion papers (say [1–4] by the authors for methodologically
uniform sample) is that the quoted error bars have not
really become smaller, merely more believable. For in-
stance, a confidence interval for the dark energy density
that would be quoted three years ago by assuming that
four disparate data sets were all correct [1] can now be
derived from CMB + LSS power spectra alone [4–7] and
independently from CMB + SN 1a as a cross-check.

FIG. 1. Measurements of the linear matter power spectrum

P (k) computed as described in the text, using the concordance

model of [5] (solid curve) to compute window functions. The loca-

tions of the CMB points depend on the matter budget and scales

with the reionization optical depth as e2τ for k ∼> 0.002. Correcting

for bias shifts the 2dF galaxy points [8] vertically (b = 1.3 assumed

here) and should perhaps blue-tilt them slightly. The cluster point

scales vertically as (Ωm/0.3)−1.2, and its error bars reflects the

spread in the literature. The lensing points are based on [9]. The

LyαF points are from a reanalysis [10] of [11] and have an overall

calibration uncertainty around 17%.

This paper aims to extend this trend, showing how
measurements can be combined to raise the ambition
level beyond simple parameter fitting, testing rather than
assuming the underlying physics. Many of the dozen or
so currently fashionable cosmological parameters merely
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Figure 2: Measurements of the present day linear matter power spectrum P (k). From Tegmark & Zaldar-
riaga 2002, Phys Rev D 66, 10.

2 Complications: redshift space distortions and bias

Figure ?? shows that the matter power spectrum is measured in several ways: CMB anisotropies on the
largest scales (recall that the Sachs-Wolfe effect is due to fluctuations in the dark matter distribution on large
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scales), galaxy surveys in the middle of the range, and weak lensing and the Lyα forest on smaller scales.
We will discuss weak lensing and the Lyα forest later; for now, we will describe some of the complications
involved in using galaxy surveys to determine the power spectrum.

In order to interpret the observed 3D distribution of galaxies in terms of the underlying power spectrum of
the matter distribution, we need to take into account two complications: peculiar velocities (relative to the
Hubble flow) which affect our determination of distance from the measured galaxy redshifts, and the fact
that light (i.e. galaxies) may not be an unbiased tracer of the mass.

This means that even if we measure accurately the redshifts of many galaxies in a region on the sky, the
result is not a true 3D picture. This is because we do not observe galaxies in 3D. Rather, we observe their
angular position on the sky θ, and redshift z (at the distances of interest there is no z-independent distance
estimator). But redshift has two components: the cosmological component due to the expansion of the
universe, and the Doppler effect of peculiar velocities:

1 + ztot = (1 + zcosm)(1 + zkin), (9)

or
z =

dHo + v

c
. (10)

We can thus define a redshift space s which is a transform of the real (or proper) space r, as follows:

s1 = r1 =
zc

H0
θ1 (11)

s2 = r2 =
zc

H0
θ2 (12)

s3 = r3 +
v3
H0

. (13)

It is the radial axis of redshift which is modified by the Doppler effects of peculiar velocities. The compli-
cation is that the peculiar velocities arise from the clustering itself. Thus, the apparent clustering pattern in
redshift space differs systematically from that in real space and the spatial correlation function of galaxies,
ξg(r), which is isotropic in real space is no longer isotropic in redshift space.

There are two effects at work here. The first, termed the “Fingers of God,” is due to the velocity dispersion
of galaxies within rich clusters and stretches out a cluster in redshift space. Since this affects only redshift
and not position on the sky, the stretching occurs only radially (this is why the “fingers” point back to
the observer). The other important redshift distortion is the Kaiser effect, due to galaxies bound to a
central mass and still undergoing infall. It differs from the Fingers-of-God in that the peculiar velocities
are coherent, not random, towards the central mass, though the effect is more subtle. The two effects are
sketched in Figure ??, and the Finger of God effect on galaxy redshift surveys is shown in Figure ??.

It can be shown that the redshift-space and real-space density fields are related via

δm,z = δm,r[1 + f(Ωm,0)µ
2] (14)

where µ is the cosine of the angle between the velocity vector and the line of sight, and f(Ωm,0) ≈ Ω0.6
m,0 is

the “velocity suppression factor” which increases for larger mass densities.

The second complication arises from the fact that in galaxy redshift surveys we map out the distribution of
the light, whereas we are interested in the mass density field, not necessarily the same thing. The relation
between mass and light is determined by complex physical processes, but is generally described by a linear
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Real Space Redshift Space

random velocities in virialized cluster Fingers of God

radial velocities in collapsing cluster Kaiser effect

Figure 3: Redshift-space distortions due to line of sight velocities in galaxy clusters.

Figure 4: The “finger of god” effect in a simulated redshift survey. The left panel shows the true density
distribution, and the right panel shows the redshift distortions when the distribution is observed from a point
below the panel. The galaxy clusters appear as fingers pointing toward the observer because the random
line-of-sight velocities in the clusters smear out distances derived from the Hubble law.
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bias parameter b (that is, we assume some linear response of the galaxy formation process to small density
perturbations), such that:

δlum = b δm = δm + (b− 1)δm (15)

The point of the trivial rearrangement is to emphasize that the observed density fluctuation is a mixture of
the dynamically generated density fluctuation, plus an additional term due to bias, which populates different
regions of space in different ways. The first term is associated with peculiar velocities, but the second is
not—the enhancements in galaxy densities are just some additional pattern.

In redshift space, we therefore add the anisotropic perturbations due to the dynamical component to the
isotropic biased component, to obtain

δlum,z = δm,r[1 + f(Ωm,0)µ
2] + (b− 1)δm,r = δlum,r

[
1 +

f(Ωm,0)µ
2

b

]
. (16)

Redshift-space effects thus give us a characteristic anisotropy of clustering, which can be used to measure
the parameter β = Ω0.6

m,0/b. The power spectra in redshift and real space are related by

Pz

Pr
= (1 + βµ2)2. (17)
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