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The familiar CMB power spectrum is shown in Figure 1. Today we will discuss the origins of the peaks and
troughs, and what we can learn from them.

Figure 1: The CMB power spectrum, including data from four recent experiments. From Sievers et al.
(2009).

1 Description of temperature fluctuations: review

First a brief review of how we describe the fluctuations:

• We are interested in the statistical properties of the temperature fluctuations; the strength of fluctu-
ations on different angular scales over different parts of the sky. Since the temperature fluctuations
δT/T are observed on the spherical surface of last scattering, it is useful to expand in spherical har-
monics:

δT

T
(θ, φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, φ) (1)

where Ylm are the usual spherical harmonic functions.
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• Most important statistical property is the correlation function C(θ). We consider two points in di-
rections n̂ and n̂′, separated by an angle θ given by cos θ = n̂ · n̂′. Then the correlation function
is

C(θ) =

〈
δT

T
(n̂)

δT

T
(n̂′)

〉
n̂·n̂′=cos θ

(2)

We multiply δT/T at the two points and average the product over all points separated by the angle θ.

• We would like to know the value of C(θ) over all angles from θ = 0 to θ = 180◦, but we are limited
by the range of angular scales we can actually measure.

• Limited range of angular resolution available makes the expansion in spherical harmonics very useful.
We can write the correlation function in the form

C(θ) =
1

4π

∞∑
l=0

(2l + 1)ClPl(cos θ) (3)

where Pl are the Legendre polynomials. This allows us to break a measured correlation function C(θ)
into its multipole moments Cl.

• For a given experiment, Cl will be nonzero for angular scales larger than the resolution of the exper-
iment and smaller than the patch of sky being examined. In general, a term Cl is a measurement of
temperature fluctuations on the angular scale θ ∼ 180◦/l, so for practical purposes the multipole l is
interchangeable with the angular scale θ.

• The l = 0 (monopole) term vanishes if we have the right mean temperature. The l = 1 (dipole) term
primarily results from our motion through space as already discussed. Moments with l ≥ 2 are most
interesting for cosmology, since they tell us about fluctuations at time of last scattering.

• In presenting results of CMB observations, customary to plot the function

∆T ≡
(
l(l + 1)

2π
Cl

)1/2

〈T 〉. (4)

This tells us the contribution per logarithmic interval in l to the total fluctuations δT of the CMB. This
tells us where the energy is across a wide range of l.

2 Origin of the fluctuations

Now we’ll discuss the origin of the fluctuations and how they relate to the shape of the CMB power spectrum.

2.1 The universe before recombination

• Because the positions of particles are indeterminate, the universe is always filled with density fluctu-
ations: regions which are randomly underdense or overdense relative to the average density.

• Inflation took density variations on very small scales and expanded them to super-horizon size. Fluc-
tuations on super-horizon scales are no longer in causal contact, and so cannot respond to changes in
the environment; they are frozen.

• When particle horizon grows large enough to encompass the density fluctuations, they can then react
to the environment.
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• The size of a region that can respond as a whole is determined by the time available for a sound wave
to cross the region. This is called the sonic horizon or acoustic horizon.

• The sound speed is

cs =

(
∂P

∂ρ

)1/2

, (5)

so it depends on the equation of state P = wρc2. Before decoupling, photons, electrons and baryons
were tightly coupled in a photon-baryon fluid, and the sound speed is

cs = c/
√

3 (6)

as expected for a photon gas with w = 1/3.

• Therefore the sonic horizon ds is related to the particle horizon dh by

ds = dh/
√

3 (7)

• Decoupling occurred in the matter-dominated era when the particle horizon is dh = 3ct. Recall: the
horizon distance at time t is

dh(t) = a(t)

∫ t

0

c dt

a(t)
. (8)

During the matter era (assuming a flat universe with k = 0), a(t) = Ct2/3, so

dh(t) = 3ct. (9)

• So the sonic horizon distance is
ds(t) =

√
3ct. (10)

Using the time of decoupling tdec ≈ 3.8× 105 yr,

ds(t) =
√

3ctdec = 6.2× 1021 m = 200 kpc, (11)

comparable to the Hubble distance at the time of last scattering

dH(zls) =
c

H(zls)
≈ 3.0× 108 m s−1

1.24× 10−18 s−1(1101)3/2
≈ 6.6× 1021 m ≈ 0.2 Mpc (12)

where we have computed H(z) at zls ≈ 1100 using the expression H(z) = 1.24 × 10−18 s−1(1 +
z)3/2.

• A patch of the last scattering surface with this physical size will have an angular size, as seen from
Earth, of

θs =
ds
dA
≈ 0.2 Mpc

13 Mpc
≈ 0.015 rad ≈ 1◦ (13)

We will see that the first peak in the ∆T vs. l curve corresponds to the sonic horizon θs.

• Origin of fluctuations with θ > θs (l < 180) is different from those with θ < θs (l > 180) and we
will consider them separately.
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2.2 Sub-horizon scale fluctuations

• Fluctuations on scales smaller than the sonic horizon θ ≤ θs come from regions small enough that
sound waves have had time to cross them by the time of decoupling. This means that the fluctuations
depend on the behavior of photons and baryons.

• Immediately before decoupling, photons, electrons and protons make a single photon-baryon fluid.
Its energy density is about a third of the dark matter, so it moves primarily under the gravitational
influence of the dark matter rather than under its own self-gravity.

• If the photon-baryon fluid is in a potential well, it will fall to the center. If the size of the well is larger
than the sonic horizon, the fluid, traveling at the sound speed cs < c, will not have time to fall to the
center by the time of last scattering. This is why the motions of photons and baryons don’t matter on
scales θ > θs and why the fluctuations on these large scales are determined only by the dark matter
distribution, as we will see later.

• On scales smaller than the horizon, θ < θs, oscillations develop. The falling photon-baryon fluid is
compressed by gravity, and its pressure rises until it’s sufficient to make the fluid expand outward.
Expansion continues until pressure drops enough for gravity to cause it to fall inward again. This
results in standing waves in the fluid called acoustic oscillations.

• The temperature is higher than average in regions of compression, and lower than average in regions
of rarefaction. We see the imprint of these oscillations in the temperature fluctuations of the CMB.

• We can describe these oscillations with a very simple toy model. Consider a cylinder of cross-sectional
area A and length 2L, filled with gas (see Figure 2). There is a movable piston in the center of the
cylinder which represents the inertia of the baryons, so the piston has mass m equal to the mass of
baryons in the cylinder. The equilibrium values of the pressure and density are P0 and ρ0 respectively,
so the mass of the piston is m = 2LAρ0.

x=0L L

A x

g

piston mass m

Region 1 Region 2

Figure 2: A cylinder of length 2L and cross-sectional area A filled with gas. A moveable piston is in the
center of the cylinder.

• If we displace the piston, the density on either side changes by a small amount ∆ρ, which is accom-
panied by a pressure difference

∆P = P1 − P2 (14)
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where, to first order,

P1 = P0 +
dP

dρ
∆ρ1 (15)

and
P2 = P0 +

dP

dρ
∆ρ2 (16)

• Since the sound speed is

cs =

(
∂P

∂ρ

)1/2

, (17)

we have
∆P =

dP

dρ
(∆ρ1 −∆ρ2) = c2s(∆ρ1 −∆ρ2). (18)

For a displacement x of the piston,

∆ρ1 = ρ1 − ρ0 = ρ0

(
ρ1
ρ0
− 1

)
= ρ0

(
L

L+ x
− 1

)
(19)

and

∆ρ2 = ρ2 − ρ0 = ρ0

(
ρ2
ρ0
− 1

)
= ρ0

(
L

L− x − 1

)
(20)

since the mass m = 2LAρ0 of gas on either side doesn’t change.

• So the pressure difference is

∆P = c2sρ0

(
1

1 + x/L
− 1

1− x/L

)
(21)

and to first order in x,
∆P = −2c2sρ0

(x
L

)
. (22)

• Newton’s second law for the piston of mass m = 2LAρ0 is

m
d2x

dt2
= A∆P (23)

which is

2LAρ0
d2x

dt2
= −2c2sAρ0

(x
L

)
. (24)

• The equation of motion is therefore
d2x

dt2
= − c

2
s

L2
x, (25)

which results in simple harmonic motion x = x0 sin(ωt) with frequency

ω =
cs
L
. (26)

This shows us that larger density fluctuations will oscillate more slowly, and that the frequency of
oscillation depends on the sound speed, which depends on the baryon density and the equation of
state.
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• Now we add a uniform gravitational field of strength g, directed in the positive x direction. This
represents the effect of a concentration of dark matter on the baryons in the photon-baryon fluid.
Because the dark matter isn’t subject to the strong radiation pressure of the photons, it can form
clumps that can gravitationally assist or resist the motion of the fluid.

• Newton’s second law is now

m
d2x

dt2
= A∆P +mg (27)

which gives
d2x

dt2
= − c

2
s

L2
x+ g. (28)

• To solve this we define

y ≡ x− L2

c2s
g (29)

so Newton’s second law becomes
d2y

dt2
= − c

2
s

L2
y. (30)

As before the solution is simple harmonic motion with frequency ω = cs/L, but now the oscillations
are about y = 0, corresponding to an equilibrium position

xeq =
L2g

c2s
> 0. (31)

• This is the behavior of a forced harmonic oscillator. The solution is shown in Figure 3. The solid line
is the unforced solution, with g = 0: oscillations about the origin. The dashed curves are the forced
solutions for two different frequencies. In both cases the zero point of the oscillations shifts in the
direction of the force, and the effect is more dramatic for lower frequencies.

• The lower panel of Figure 3 shows the square of the oscillator position as a function of time. All three
oscillators show a series of peaks at t = nπ/ω corresponding to the maxima and minima. The odd
modes are compression, and the even modes are rarefaction. In the case of the unforced oscillator, the
heights of the peaks are identical, but in the forced case the heights of the odd peaks are greater than
the heights of the even peaks, and the effect is most dramatic for low frequencies. This means that the
compressions in the direction of the gravitational field are of greater magnitude than the rarefactions.

• This tells us that in the early universe, because of the gravitational effect of dark matter, collapsing
fluctuations are favored over expanding ones. Because compressions are of greater magnitude than
rarefactions, we expect the peaks of the angular power spectrum to be enhanced for odd harmonics
(compressions) and diminished for even harmonics (rarefactions).

• The frequency depends on the baryon content of the universe, since baryons are heavy and reduce
the sound speed. This means that both the position and relative heights of the additional peaks are
very sensitive to Ωb and to the relative amounts of dark and baryonic matter. Careful modeling of
the CMB power spectrum is complex, but matching of these models to observations gives us precise
measurements of Ω0, Ωb and Ωm.

• Now we consider fluctuations on different scales at the time of recombination. Several modes of the
acoustic oscillations are shown in Figure 4. The smaller a fluctuation is, the sooner it is included
by the sound horizon and can begin oscillating. The first peak of the power spectrum is due to the
compression of a large region that reached maximum compression at the time of decoupling. The
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Figure 3: Displacement of a forced harmonic oscillator, for different frequencies.
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first trough is produced by a smaller region that started oscillating earlier and is able to oscillate more
quickly, so it arrives at δT = 0 at the time of decoupling. The second peak is due to the oscillation
of a still smaller region that has passed through its maximum compression and reached maximum
rarefaction at the time of decoupling. Note that the magnitude of δT for the first peak is larger than
that for the second peak, because of the biasing effect of dark matter discussed above.

FIGURE 3. Evolution of four Fourier modes of the temperature of the radiation as a function of
conformal time ! (= !∗ at recombination). Largest scale mode (labeled “Super-Horizon”) is still constant
at recombination. A slightly smaller scale mode (labeled “First peak”) has begun its acoustic oscillation,
and has maximal amplitude at recombination. An even smaller scale mode began oscillating earlier; its
amplitude is zero at recombination. The smallest scale mode shown here (“Second Peak”) has gone
through one full oscillation, so its amplitude will be at a maximum. From [10].

only the cos modes. It is difficult to envision any other theory with this striking feature.

3. ACOUSTIC OSCILLATIONS

How do perturbations evolve once they re-enter the horizon? A cartoon version of the
equation governing them is

"̈ − c2s#2" = F (2)

where cs is the sound speed and F is a forcing function due to gravity. The perturbations
obey the wave equation as one expects physically: a region which is very overdense is
driven by gravity to become more overdense, but driven toward the average density by
pressure.
At this point, youmight come to the conclusion that the spectrum of anisotropies in the

radiation today will exhibit a series of peaks and troughs just as a guitar string produces
a series of higher harmonics. In fact, the spectrum of the CMB looks remarkably like
that of a guitar string. However, underlying the similarity is a pair of differences which
are essential to the argument that inflation is the origin of the perturbations.
A guitar string produces a set of harmonics because it is tied down at its ends. So

there are only a discrete set of frequencies at which it can oscillate. There is no such
restriction for perturbations in the early universe, so why do we see anisotropies at
certain frequencies but not at others?

Figure 4: Several modes of acoustic oscillations in the early universe. The sum of potentials on the vertical
axis can be thought of as δT , so positive values indicate compression of the photon-baryon fluid and negative
values indicate rarefaction. The horizontal axis indicates time as a fraction of the time before recombination,
so η/η∗ = 1 at recombination. From Dodelson, Modern Cosmology.

• So, the first peak in the CMB power spectrum corresponds to maximum compression at the time of
last scattering, and the size is equal to the sonic horizon at the time of last scattering. Higher l peaks
will be from higher harmonics.

• Location of first peak is a standard ruler, since it corresponds to the horizon size at the time of
last scattering. It’s sensitive to the cosmological parameters through the angular diameter distance;
primarily sensitive to overall curvature. See Figures 6 and 5. The observed location of the first peak
tells us that the universe is flat: Ω0 = 1.02± 0.02 from WMAP.

• The suppression of the second peak increases as Ωb increases, since a greater baryon density slows
the oscillations. This means that the relative heights of the first two peaks gives Ωb. The third peak
corresponds to a second maximum compression. This is sensitive to the density of dark matter, and
the comparable heights of the second and third peaks tell us that most of the matter is dark.

• At even higher l, the peaks decrease. This is damping due to the finite distance a photon travels
between scatterings. The mean free path between scatterings is

λmfp =
1

neσT
, (32)
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Figure 5: The angular size of the sound horizon at recombination depends on the curvature of the universe.

Figure 6: The position of the first peak in the CMB power spectrum depends on the curvature Ω. From
Kamionkowski & Kosowsky (1999).
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so if the density of electrons is large the mean free path is small. In a Hubble time, a photon scatters
∼ neσTH

−1c times, and the total distance traveled is the mean free path times the square root of the
total number of steps. So a photon moves a mean distance

λD ∼ λmfp
√
neσTH−1c (33)

=

√
c

neσtH

in a Hubble time. We expect perturbations on scales smaller than λD to be washed out. Because ne is
proportional to Ωb when the universe is ionized, models with smaller baryon density have larger λD
and the damping sets in at larger scales. So the damping at high values of l also tells us about Ωb.
This is called Silk damping.

• Important to note that there are oscillations occurring on all scales, but we only see some of them,
depending on their phase at the time of recombination.

• The existence of the oscillations in the cosmic microwave background provides strong evidence for
inflation, since without inflation the perturbations on different scales wouldn’t be in phase. The exis-
tence of the CMB harmonics shows us that the oscillations of all density fluctuations of a given size
are in phase: they reach their maximum compressions and rarefactions at the same time, so they all
began oscillating simultaneously.

• Inflation expands fluctuations to super-horizon size, where they remain frozen until the horizon en-
compasses them and allows them to oscillate. Without inflation, the fluctuations would be generated
at random times and would not be in phase. This is an extension of the horizon problem: regions on
the surface of last scattering not now in causal contact not only have the same temperature, but also
oscillate in phase.
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